Phycology جلبک شناسی

نخستین پایگاه اطلاعاتی جلبک شناسی به زبان فارسی

Volvox

Volvox Linnaeus, 1758: 820

Classification:
Empire Eukaryota
Kingdom Plantae
Subkingdom Viridaeplantae
Phylum Chlorophyta
Class Chlorophyceae
Order Volvocales
Family Volvocaceae

Lectotype species: Volvox aureus Ehrenberg

Original publication: Linnaeus, C. (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Editio decima revisa. Vol. 1 pp. [i-iv], [1]-823. Holmiae [Stockholm]: impensis direct. Laurentii Salvii.

 

Type designated in Ehrenberg, C.G. (1838). Infusionsthierchen als vollkommene Organismen. I-II. pp. 1-547, 64 pls.. Leipzig: Leopold Voss.

Taxonomic status: currently recognized as a distinct genus.

Description: Colonies spherical, subspherical, ellipsoidal or ovoid, containing 500-50,000 cells arranged at the periphery of a gelatinous matrix, forming a hollow sphere. Two to 50 large reproductive cells (gonidia) situated in posterior 1/2 to 2/3 of colony. Each cell enclosed by gelatinous sheath which is distinct or confluent (species dependent). Somatic cells spherical, ovoid or star-shaped, each with two equal flagella, a stigma, two contractile vacuoles at base of flagella, and a cup-shaped chloroplast with single pyrenoid. Cytoplasmic strands between cells are thick, thin or absent and this is species dependent. Asexual reproduction by autocolony formation, each reproductive cell dividing successively to form a hollow, spheroidal plakea, which then inverts to form a daughter colony. Sexual reproduction oogamous; in monoecious species the sexual colony with both sperm packets (bundles of sperm) and eggs. In dioecious species, male colonies with androgonidia which divide successively into sperm packets; such males may be markedly reduced in size (dwarf male) or nearly as large as asexual colonies. The female colony has eggs, whose number is nearly the same as that of gonidia in asexual colonies (facultative female) or much larger (special female). After fertilization zygotes develop a heavy cell wall that may be ornamented with reticulation or spines. Upon germination, zygotes produce a single biflagellate gone cell. Volvox is cosmopolitan in freshwater; V. aureus is common. Volvox was established with V. globator and more than 12 additional species have been described. The genera Besseyosphaera, Campbellosphaera, Merrillosphaera, Copelandosphaera and Janetosphaera were described by Shaw but are now included in Volvox. Each of these genera was later considered to be a section of Volvox, with Euvolvox [=Volvox] including species referable to Volvox by Shaw. Later, the sections Campbellosphaera and Besseyosphaera were rejected and 18 species were recognized in four sections based on differences in the gelatinous matrix, shape of somatic cells, and cytoplasmic strands connecting cells in the colony. Embryogenesis of V. carteri has been studied in detail, and chemical induction of sexual colonies were described for V. aureus, V. carteri, V. rousseletii, V. gigas, V. observus and V. capensis. Inducers are species-specific glycoproteins of ca. 30,000 MW produced by sperm, except in V. capensis where L-glutamic acid is reported. Ultrastructure of flagellar apparatuses in V. rousseletii and V. carteri implied a remote relationship. The extracellular matrix of the four sections of Volvox has also been studied ultrastructurally, and a system of nomenclature was proposed in which the matrix was divided into four main zones

برگرفته از http://www.algaebase.org

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ٤:۱۱ ‎ق.ظ روز یکشنبه ٥ دی ۱۳۸٩

Diatoms in biotechnology

Diatoms are photosynthesising algae, they have a siliceous skeleton (frustule) and are found in almost every aquatic environment including fresh and marine waters, soils, in fact almost anywhere moist. They are non-motile, or capable of only limited movement along a substrate by secretion of mucilaginous material along a slit-like groove or channel called a raphe. Being autotrophic they are restricted to the photic zone (water depths down to about 200m depending on clarity). Both benthic and planktic forms exist. Diatoms are formally classified as belonging to the Division Chrysophyta, Class Bacillariophyceae. The Chrysophyta are algae which form endoplasmic cysts, store oils rather than starch, possess a bipartite cell wall and secrete silica at some stage of their life cycle. Diatoms are commonly between 20-200 microns in diameter or length, although sometimes they can be up to 2 millimeters long. The cell may be solitary or colonial (attached by mucous filaments or by bands into long chains). Diatoms may occur in such large numbers and be well preserved enough to form sediments composed almost entirely of diatom frustules (diatomites), these deposits are of economic benefit being used in filters, paints, toothpaste, and many other applications

photo copyright 2001 by Dee Breger at the Lamont-Doherty Earth Observatory

photo copyright 2001 by Dee Breger at the Lamont-Doherty Earth Observatory

 

Please see also

http://www.indiana.edu/~diatom/diatom.html

Bozarth A, Maier UG, Zauner S (2009) Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol. 82: 195-201

Armbrust EV (2009) The life of diatoms in the world's oceans. Nature. 459: 185-92

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ٥:٠۱ ‎ب.ظ روز دوشنبه ٢٢ آذر ۱۳۸٩

The blue light photoreceptor Phototropin

لطفا به لینک زیر مراجعه فرمایید

http://rapidshare.com/files/427075213/Phototropin-Version6__Kompatibilit___tsmodus_.pdf

 

آرش کیانیان مومنی

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ٦:۳٠ ‎ب.ظ روز دوشنبه ۳ آبان ۱۳۸٩

جلبکهای تثبیت کننده نیتروژن

با سلام

این مطلب رو به تقاضای یکی از بازدیدکنندگان عزیز مینویسم. برای اطلاعات بیشتر کتابهای Algal ecology وecology of cyanobacteria میتونند مفید باشند:


سه دسته از جلبک‌های سبزآبی ازت گازی را تثبیت می‌کنند و بنابراین به منابع نیتروژن غیروابسته هستند. در ادامه به شرح این سه گروه پرداخته خواهد شد.

گروه اول جلبک‌های ریسه‏ای دارای هتروسیت مانند نوستوک، آنابنا، آنابنوپسیس، سیلیندروسپرموم، کالوتریکس و سیتونما می‏باشند. این گونه‏ها قادر به تثبیت ازت گازی هستند. در محیط فاقد نیتروژن معدنی هتروسیست‏ها رشد کرده و از ازت گازی استفاده می‌کنند. در حالیکه محیط سرشار از ازت معدنی، رشد هتروسیست‏ها را کند می‌کند. هتروسیست‏ها سلولهای بزرگ توخالی حاوی تیلاکوئیدهای لایه‏ای و دایره‏ای شکل با سیتوپلاسم متراکم و همگن هستند که دارای کاروتنوئید بیشتر و کلروفیل و فیکوبیلین کمتری می‏باشند و به رنگ مایل به زرد مشاهده می‏شوند. به دلیل نبود فیکوبیلین‏ها و کلروفیل a تثبیت CO2 یا تولید O2 در هتروسیست‏ها وجود ندارد. در این ساختارها تیلاکوئیدها به هم فشرده بوده، حاوی دو نوع چربی گلیکولیپید و آسیل لیپید هستند و در آنها میکروپلاسمودسم نیز یافت می‏شود که موجب انتقال آمونیوم تثبیت شده به صورت گلوتامین از هتروسیست‏ها به سلول‌های مجاور می‏شود. دیواره سلولی آنها شامل لایه لیفی بیرونی، لایه همگن میانی و لایه تیغه‏ای درونی است. ضخامت دو لایه اخیر در انتهای قطبی سلول بیشتر است. هتروسیست‏ها در جنس گلئوتریشیا4 موقعیت انتهایی، در جنس نوستوک و سیتونما موقعیت بینابینی و در جنس نوستوکوپسیس موقعیت جانبی دارند. در آنابنوپسیس این ساختارها حالت جفت جفت دارند (شکل 2-3).

هتروسیست تنها در جلبک‌های سبزآبی رشته‏ای اسیگونماتال‏ها5 و نوستکال‏ها6 به ویژه در تیره نوستوکاسه7 وجود داشته و در انواع تک سلولی و کلنی یافت نمی‏شود. امروزه مشخص شده است که تثبیت نیتروژن تنها در فقدان اکسیژن آزاد صورت می گیرد و نقش هتروسیست‌ها کمک به ایجاد شرایط بی هوازی با استفاده از دیواره ضخیم آنها است. هتروسیست‏های جدا شده از آنابنا به تنهایی نیز قادر به تثبیت ازت گازی هستند. وجود هتروسیست در فسیل‌های دوره آرکئوزوئیک بیانگر این مطلب است که تثبیت نیتروژن منشا قدیمی دارد. به نظر می‏رسد که نیتروژنازها و سایر آنزیم‌های دخیل در فرآیند تثبیت نیتروژن به تیلاکوئیدهای تخریب شده متصل می‏شوند. به طور کلی فعالیت‌های احتمالی هتروسیست‌ها شامل موارد زیر است. 1- فعالیت مکانیکی و استحکام رشته 2- مرکز ذخیره برخی مواد مانند املاح 3- دخالت در تولید مثل، اگر هتروسیست از رشته برداشته شود اسپورزایی متوقف می‏شود. 4- تحریک تولید آکینیت و واکوئل‏های گازی (دسیکاچاری 1959، بولد و وین 1985، پیرسون 1995، لی 2008).

گروه دوم تک‏سلولی‏های بدون هتروسیست مانند گلئوکاسپا هستند که قادر به تثبیت ازت گازی هستند. مکانیسم حفاظت از اکسیژن برای جلوگیری از غیر فعال شدن آنزیم نیتروژناز در این گروه به میزان زیادی ناشناخته است. اما ممکن است غلاف ژلاتینی مانع از اثر اکسیژن بر آنزیم نیتروژناز شود (بولد و وین 1985، پیرسون 1995).

گروه سوم جلبک‌های سبزآبی ریسه‌ای بدون هتروسیست مانند گونه پلکتونما بوریانوم،هستند که در شرایط بی هوازی قادر به تثبیت ازت گازی می‏باشند (دسیکاچاری 1959، بیلگرامی و ساها 2004، لی 2008).

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ٤:٢۸ ‎ق.ظ روز شنبه ٢٧ شهریور ۱۳۸٩

استفاده از میکروالگها (ریزجلبک ها) برای رفع آلودگیهای زیست محیطی

با سلام

برای رفع آلودگیهای زیست محیطی مانند فلزات سنگین و نیز مواد غذایی وارده از پسابهای شهری و صنعتی و کشاورزی مانند نیتروزن و فسفر میتوان از روش رسوب دادن ریز جلبکها (بی حرکت نمودن) به کمک پلی مرهای زیستی مانند آلجینات استفاده نمود که مزیت این روش نسبت به روشهای شیمیایی موجود در آنست که خود این مواد دیگر خاصیت آلوده کننده ندارند و نیز سازگار با محیط می باشند اما بسیار گران بوده و در عین حال زمان بیشتری را برای حصول به نتیجه دلخواه نیاز دارند.

در این روش از انواع جلبک ها مانند جلبکهای سبز و سبز آبی استفاده شده است. این جلبک ها موفق به جذب حجم بسیار بالایی از مواد سمی و فلزات سنگین و آلاینده ها شده و در شکل گلوله های بزرگ رسوب نموده و ته نشین می شوند. آخرین مقالات در این زمینه مربوط به سال 2009 و 2010 می باشد.

موفق باشید

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۳:٢٥ ‎ق.ظ روز یکشنبه ٢۳ خرداد ۱۳۸٩

اهمیت اکولوژیک و اقتصادی سیانوفیتا

جلبکهای سبزآبی در دریاها و آبهای شیرین به طور گسترده حضور دارند. بسیاری از گونه‏ها در مناطق گرم با دمای بیشتر از 80 درجه سانتیگراد، دریاچه‏های شور، یخچالها و مناطق برفی و دیگر اکوسیستم‏ها حضور دارند. جلبکهای سبزآبی در ماههای تابستان به طور گسترده رشد کرده و مهمترین عامل تولید شکوفه آبی در آبهای شیرین هستند.

علل اهمیت اکولوژیک سیانوفیتا سرعت بالای فتوسنتز و تولید کنندگی در آنها، تولید مواد سمی و در نتیجه کنترل سایر گیاهان و جانوران اکوسیستم، تثبیت نیتروژن و نقش موثر آنها در تولید گلسنگها می‏باشد. اهمیت گونه‏های نانوپلانکتونی جلبکهای سبز آبی در اقیانوسها تایید شده است. استرماتولیت‏های حاصل از سیانوفیتا نیز از شاخص‏های مهم در اکولوژی دیرین‏شناسی می‏باشند. گیاهخواران کوچک آبزی با تغذیه از این گروه مانع گسترش استروماتولیت‏ها می‏شوند. لذا با بررسی تنوع گونه‏ای و فراوانی استروماتولیت‏ها می‏توان میزان فراوانی و تنوع جانوران گیاهخوار در اکوسیستم‏های آبی گذشته زمین را تخمین زد.

شکوفایی، گسترش و در نهایت تجزیه گونه‏هایی از آنابنا، میکروسیس‏تیس و آفانیزومنون در آبهای گرم که در شرایط بدون اکسیژن به راحتی رشد می نمایند، موجب کاهش اکسیژن به ویژه در شب هنگام شده و به همراه تولید سموم موجب مرگ و میر آبزیان می‏شوند. این سموم از گروه هپاتوتوکسین‏ها (موثر بر کبد)، نوروتوکسین‏ها (موثر بر اعصاب) و سیتوتوکسین‏ها (موثر بر سلولهایی مانند پوست) هستند. نگرانی‏های بیشتری در مورد هپاتوتوکسین‏ها در بین دانشمندان وجود دارد. گونه میکروسیستیس توکسیکا دارای مواد سمی بسیار مهلک موثر بر کبد می‏باشد. بسیاری از اشکال پلانکتونی سمی از طریق آب آشامیدنی وارد بدن انسان شده و موجب بیماری می‏شوند. آنابنا و میکروسیس‏تیس سبب ناراحتیهای معدی شده و گونه لینگبیا ماجوسکولا در استخرها و آبگیرهای طبیعی باعث بروز بیماریهای پوستی می‏شود.

تجزیه جلبکهایی نظیر آنابنا و میکروسیس‏تیس در مخازن آب موجب ایجاد مزه و بوی بد در آب می‏گردد. همچنین توانایی صافی‏های تصفیه کننده آب در ایستگاههای پمپاژ به خاطر تجمع و رسوب جلبکها کاهش می‏یابد. گونه‏های متعلق به آناسیس‏تیس موجب خوردگی لوله‏های آب و دیگهای بخار می‏شود، لذا جهت کنترل آنها از مواد شیمیایی مانند کلرین، سولفات مس و دی کلروفن استفاده می‏شود. تحقیقات اخیر نشان می دهد آلودگی دریاچه‏ها به وسیله شوینده‏های فسفردار موجب افزایش رشد سیانوفیتا شده و در نتیجه تولید نیتروژن نیز افزایش می‏یابد.

استفاده از این گروه برای تثبیت نیتروژن در مزارع برنج موجب افزایش 30 درصدی تولید شلتوک شده است. جنس های آنابنا، آنابنوپسیس، آلوزیرا، سیلیندروسپرموم، نوستوک، کالوتریکس، سیتونما، تولیپوترکیس، هاپالوسیفون، ماستیگوکلادوس و استیگونما دارای خاصیت تثبیت نیتروژن بوده و میزان تثبیت سالیانه نیتروژن در جنس تولیپوترکیس 35 تا 60 کیلوگرم در هکتار گزارش شده است. گونههای اسپیرولینا در آبهای شور و قلیایی مناطق خشک به راحتی رشد نموده و 70% وزن خشک گونه‏هایی مانند اسپیرولینا پلاتینسیز را پروتئین تشکیل داده و منبع ویتامین B12 نیز هستند. ارزش دارویی برخی سیانوفیتا مانند اسپیرولینا پلاتینسیز و ارزش ضد ویروسی بسیاری از آنها اثبات شده است. این جنس به صورت بومی در چاد و مکزیک و به طور تجاری در آمریکا، ژاپن و تایلند کشت و بهره‏برداری می‏شود. گونه نوستوک کومون نیز به عنوان غذا مورد استفاده قرار می‏گیرد. از سیانوفیتا در مطالعات فتوسنتز، تنفس و تثبیت نیتروژن و نیز مطالعه فرآیندهای هوازی و بی هوازی استفاده می‏شود. کاربرد مواد استخراج شده از سیانوفیتا در درمان بیماریها و سرطان نیز در حال بررسی بوده و نتایج مثبتی نیز به همراه داشته است. این گروه از جلبکها در تعیین آلودگی های آبها به عنوان شاخصهای زیستی نیز مورد استفاده هستند.

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۸:۱٦ ‎ق.ظ روز یکشنبه ۱٧ آبان ۱۳۸۸

جلبکهای اپی پلیک

جلبکهای اپی پلیک به جوامع جلبکی پری فیتون رسوبات غیر سخت در آب شیرین و دریا گفته می شود. جلبکهای متصل یا پری فیتون بر خلاف فیتوپلانکتونها، در اکوسیستم های آبی کم عمق با جریان آرام به خوبی گسترش یافته و به دلیل نقش آنها در پایه زنجیره های غذایی، چرخه گردش مواد، تغذیه بی مهرگان و در نتیجه آبزیانی مانند ماهی ها مهم هستند. انواع جلبکهای کف زی به دلیل نقش آنها در تنوع زیستی و تولید در اکوسیستم های آبی از اجزای مهم این اکوسیستم ها به شمار می آیند.

نحوه نمونه گیری از جلبکهای اپی پلیک

مطالعات بسیاری در مورد تاکسونومی، اکولوژی، فلوریستیک و سایر جنبه های مطالعاتی این موجودات انجام پذیرفته است. ترکیب تاکسونومیک جلبکهای کف زی نشانگر وضعیت اکولوژیک اکوسیستم های آب شیرین، کیفیت آب، تغییرات اکولوژیک در متغیرهای محیطی اکوسیستم های آبی و وضعیت تغذیه ای یا تروفیسم اکوسیستم می باشد. این موجودات به دلیل اتصال طولانی مدت به بستر های مختلف و حساسیت نسبت به صفات فیزیکی و شیمیایی آب، نقش مهمی در تعیین کیفیت و آلودگی آبها دارند. به نحوی که ساختار جوامع پری فیتون، ترکیب گونه ای و پاسخ توالی این جوامع نسبت به تغییرات عوامل محیطی در طبقه بندی اکوسیستم های آبی مفید است.  

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۸:٠۸ ‎ق.ظ روز یکشنبه ۱٧ آبان ۱۳۸۸

آللوپاتی در جلبکها

با سلام

مطلب زیر در رابطه با آلوپاتی در جلبکهاست. لطفا مطالعه فرموده و در لینک موجود هم چند مقاله در این ارتباط را بیابید.

 

 

The comprehensive review on allelopathy (Rice, 1979, 1984) has been largely responsible for the evolution of allelopathy as an independent branch of chemical/physiological ecology. The allelopathic research during the last four decades drew attention to different facets of the interactions among the constituents of habitat, calling for an understanding of the role of allelopathy under different habitat conditions. In view of this, we have reviewed the existing information on allelopathic interactions in aquatic habitats with special reference to algal allelopathy. This review has been mainly confined, therefore, to different aspects of algal allelopathy such as allelopathic interactions in algae, algal toxins, bioassays, and implications of algal allelopathy. In spite of the large number of reviews on allelopathy (see section III), no independent review appears on algal allelopathy. Although there were reports of toxins from cyanobacteria and other algae, no appreciable attempt was made to implicate algal toxins in allelopathy under field conditions. Knowledge of chemistry and biology of allelochemical can help in their potential use in controlling plant diseases and weeds. Therefore, it is urgent to study algal toxins for their involvement in ecological phenomena such as succession, for their uses as herbicides, weedicides, and pesticides, for their uses in solving some of the problems of algal ecology, and for their involvement in applied aspects. Algal allelopathy is a manifold ecological/physiological phenomenon. Chemicals contributed by the alga can affect (1) other algae in its vicinity, (2) its own growth (i.e., autotoxicity), (3) microbes associated with it, (4) higher plants in its vicinity, and (5) accumulation and availability of nutrient ions which can influence the distribution, growth and establishment of other algae, microorganisms, and plants. However, to establish algal allelopathy of ecological relevance, it is essential to demonstrate the involvement of allelopathy under field conditions.

 

تصویر تزیینی است

 

Further, comments should be made on residence time, biological active concentration, mode of renewability, static and dynamic availability of allelochemical, and its variation, if any, with season, site, habitat, and environmental factors. Further, many algae, especially blue-green, influence the zooplankton population. Is it just a toxic effect of blue-green algae (BGA), or can it be included under allelopathy? This point has been debated and is discussed in the present article.

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱:٤٦ ‎ب.ظ روز چهارشنبه ۱۳ آبان ۱۳۸۸

هاپتوفیتا Haptophyta

هاپتوفیتا  Haptophyta

هاپتوفیتا گروهی از جلبکهای تک هسته ای تاژکدار هستند که ویژگی آنها حضور یک ساختار به نام هاپتونما بین دو تاژک نرم میباشد. این شاخه از لحاظ داشتن دو واحد غشایی شبکه آندوپلاسمی کلروپلاستی علاوه بر دو غشای کلروپلاست، مشابه با شاخه های کریپتوفیتا و هتروکونتوفیتا بوده اما در داشتن تاژک فاقد ماستیگونم با آنها متفاوت هستند. همچنین مشاهدات مولکولی نیز تفاوت این گروه با شاخه های پیش گفته را تایید می نمایند. شاخه هاپتوفیتا در ابتدا تحت نام هاپتوفیسه از رده کریسوفیسه جدا شده و سپس بدلیل فقدان حضور جنسی با این نام ( هاپتوفیتا)، در این گروه، نام آن به پریمنزیوفیسه (بدلیل حضور جنس پریمنزیوم) تغییر یافت. شواهد فسیلی از حضور اعضای پریمنزیوفیسه در حدود سیصد میلیون سال قبل دلالت دارند (لی 2008).

 

زیستگاه

این شاخه بیشتر شامل موجودات دریازی بوده اما نمونه های آب شیرین نیز در آنها یافت میشود. هاپتوفیتا گروه مهمی از نانوپلانکتونهای دریایی را تشکیل داده و مشتمل بر 45 درصد فیتوپلانکتونهای عرضهای جغرافیایی میانه در اقیانوس اطلس جنوبی هستند. فراوانی این جلبکها به سمت قطب کاهش می یابد اما در برخی آبهای قطبی نیز نمونه هایی از این شاخه یافت میشود (لی 2008).

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٢:٠٦ ‎ب.ظ روز چهارشنبه ٦ آبان ۱۳۸۸

اهمیت اکولوژیک و اقتصادی اوگلناها

اوگلناها تولیدکنندگان مهمی نیستند اما در باتلاقها، مردابها و ماندابهای دارای مواد آلی فراوان، به دلیل فعالیت تجزیه کنندگی باکتریها در تولید نیترات، فسفات و مواد دیگر، میزان اکسیژن آب بسیار کاهش می یابد. لذا حضور اوگلناها در کنار کلرلا، سندسموس، اوسیلاتوریا و چند جلبک دیگر از سیانوفیتا و کلروفیتا، موجب تولید مجدد اکسیژن در این مکانها می‏شود.

جنس اوگلنا به دلیل نیاز به نیتروژن آلی بهترین شاخص برای آلودگی آبها است. گونه‏هایی از شاخه های مختلف مانند اوگلنا ویریدیس[1]، نیتسچیا پالئا2، اوسیلاتوریا لیموزا3، اوسیلاتوریا تنوئیس4 و سندسموس ادویکائودو5 از گونههای مقاوم به آلودگی هستند. لذا اگر یک اکوسیستم آبی تنها شامل این گونه‏ها باشد، میزان آلودگی آن بالا است. در حالی که حضور گونه‏های حساس مانند اوگلنا پروکسیما6، گونیوم پکتوراله7 و کریپتوموناس اوواتا8 بیانگر آلودگی کمتر اکوسیستم می‏باشد.

از اوگلناها در مطالعات مورفولوژی عمومی سلول، فتوتاکسی، تحریک در برابر نور، تنفس سلولی و سایر فرآیندهای وابسته استفاده می‏شود. همچنین در مطالعه سیستم سیتوکرومی در میتوکندری، طبیعت پری‏پلاست و استیگما می‏توان از آنها بهره گرفت (کیان مهر 1384، بولد 1978، پیرسون 1995، بیلگرامی و ساها 2004، لی 2008)    

برای مطالب بیشتر منتظر چاپ کتاب تالوفیتا از همین نویسنده و همکاران باشید.

 



[1]Euglena viridis, 2Nitzschia palea, 3Oscillatoria limosa, 4Oscillatoria tenoides, 5Scenedesmus edvicaodo, 6Euglena proxima, 7Gonium pectorale, 7Cryptomonas ovata

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٢:٠٤ ‎ب.ظ روز چهارشنبه ٦ آبان ۱۳۸۸

فیلوژنی و طبقه بندی اوگلناها

فیلوژنی و طبقه بندی

این گروه به دلیل ساختار تک سلولی فاقد دیواره کمتر به حالت فسیل مشاهده می‏شوند. اما لیپیدها یا پروتئین‏های سلولی آنها را میتوان در تشکیلات گذشته زمین جستجو کرد. این گروه دارای 961 گونه در منابع مختلف می‏باشد که برخی از آنها را نامهای معتبر تشکیل می دهند. در رده‏بندیهای جدید این شاخه به رده اوگلنوفیسه شامل دو راسته اوگلنال، اوترپتیال و یک گروه با جایگاه نامشخص اوگلنید ها تقسیم میشود. لی اوگلناها را در اوگلنوفیسه با سه راسته هترونماتال، اوترپتیال و اوگلنال و پیرسون آنها را در دو راسته اوگلنال و کولاسیال تقسیم کرده اند (شکل 2-6) (پیرسون 1995، لی 2008).

- اوگلناها Euglenophyta

                          اوگلنوفیسه Euglenophyceae

                                                اوترپتیال Eutreptiales

                          اوگلنال Euglenales

اوگلنیدها Euglenida

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٢:٠۱ ‎ب.ظ روز چهارشنبه ٦ آبان ۱۳۸۸

گلسنگ ها Lichen

با سلام

مطلبی در مورد گلسنگ ها و بیولوژی و رده بندی آنها در اختیار قرار میگیرد. امید است که مورد استفاده شما عزیزان قرار گیرد.

لطفا با نظرات سازنده خود موجب دلگرمی باشید.

لطفا به بخش ادامه مطلب مراجعه فرمایید. 

برای دسترسی به عکسها و کل مطلب منتظر چاپ کتاب تالوفیتا از همین نویسنده و همکاران باشید.

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱۱:٥٤ ‎ق.ظ روز چهارشنبه ٦ آبان ۱۳۸۸

جلبکهای دریایی ماکرو چه هستند؟ What are seaweeds

Seaweeds are algae that liven in the sea or in brackish water. Scientists often call them "benthic marine algae", which just means "attached algae that live in the sea". Seaweeds come in three basic colours: red, green, and brown, as shown above: dulse is the red seaweed; sea lettuce is amongst the green algae; and the brown is a wrack. Red and brown algae are almost exclusively marine, whilst green algae are also common in freshwater and in terrestrial situations. Many of these algae are very ancient organisms, and although lumped together as "algae" are not actually closely related, having representatives in 4 of the 5 Kingdoms of organisms. There are about 10,500 species of seaweeds, of which 6,500 are  Rhodophyta

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۳:٤۳ ‎ق.ظ روز پنجشنبه ٢ مهر ۱۳۸۸

ارزش غذایی و دارویی جلبکهای ماکرو دریایی در طب چینی

THE NUTRITIONAL AND MEDICINAL VALUE OF SEAWEEDS
USED IN CHINESE MEDICINE

There are four seaweeds commonly used in Chinese medicine:

  • Laminaria (kelp), a brown algae and Ecklonia (the more commonly used item), a green algae as sources of kunbu (Laminaria is sometimes called haidai, to distinguish it from Ecklonia or other sources)
  • Sargassum, a brown algae, as the source of haizao
  • Pyrphora, a red algae, as the source of zicai

These seaweeds will be discussed briefly in this article.

SEAWEED'S NUTRITIONAL VALUE (1)

Seaweed draws an extraordinary wealth of mineral elements from the sea that can account for up to 36% of its dry mass. The mineral macronutrients include sodium, calcium, magnesium, potassium, chlorine, sulfur and phosphorus; the micronutrients include iodine, iron, zinc, copper, selenium, molybdenum, fluoride, manganese, boron, nickel and cobalt.

Seaweed has such a large proportion of iodine compared to dietary minimum requirements, that it is primarily known as a source of this nutrient. The highest iodine content is found in brown algae, with dry kelp ranging from 1500-8000 ppm (parts per million) and dry rockweed (Fucus) from 500-1000 ppm. In most instances, red and green algae have lower contents, about 100-300 ppm in dried seaweeds, but remain high in comparison to any land plants. Daily adult requirements, currently recommended at 150 µg/day, could be covered by very small quantities of seaweed. Just one gram of dried brown algae provides from 500-8,000 µg of iodine and even the green and red algae (such as the purple nori that is used in Japanese cuisine) provides 100-300 µg in a single gram.

The amounts of seaweed ingested as food in Japan, or in supplements, is often considerably more than 1 gram a day. Studies show that the human body adapts readily to higher iodine intake, where the thyroid gland is the main tissue involved in use of iodine (it is a component of thyroid hormones). Huge portions of the world population get insufficient iodine because the land, plants, and animals that serve as common dietary sources are very low in iodine. In many countries, iodine is added to table salt to assure adequate levels are attained. However, some developing countries are still catching up and suffering from the effects of low iodine intake. China is has the largest population with a history of low iodine intake, followed by India.

Aside from iodine, seaweed is one of the richest plant sources of calcium, but its calcium content relative to dietary requirements pales in comparison to the iodine. The calcium content of seaweeds is typically about 4-7% of dry matter. At 7% calcium, one gram of dried seaweed provides 70 mg of calcium, compared to a daily dietary requirement of about 1,000 mg. Still, this is higher than a serving of most non-milk based foods.

Protein content in seaweed varies somewhat. It is low in brown algae at 5-11% of dry matter, but comparable in quantitative terms to legumes at 30-40% of dry matter in some species of red algae. Green algae, which are still not harvested much, also have a significant protein content, i.e., up to 20% of dry matter. Spirulina, a micro-alga, is well known for its very high content, i.e., 70% of dry matter.

Seaweed contains several vitamins. Red and brown algae are rich in carotenes (provitamin A) and are used, in fact, as a source of natural mixed carotenes for dietary supplements. The content ranges from 20-170 ppm. The vitamin C in red and brown algae is also notable, with contents ranging from 500-3000 ppm. Other vitamins are also present, including B12, which is not found in most land plants.

Seaweed has very little fat, ranging from 1-5% of dry matter, although seaweed lipids have a higher proportion of essential fatty acids than land plants. Green algae, whose fatty acid make-up is the closest to higher plants, have a much higher oleic and alpha-linoleic acid content. Red algae have a high EPA content, a substance mostly found in animals, especially fish. Seaweed has a high fiber content, making up 32% to 50% of dry matter. The soluble fiber fraction accounts for 51-56% of total fibers in green (ulvans) and red algae (agars, carrageenans and xylans) and for 67-87% in brown algae (laminaria, fucus, and others). Soluble fibers are generally associated with having cholesterol-lowering and hypoglycemic effects.

FOOD USES

Probably the most widely known seaweed used for food is Porphyra, which literally means purple (see sample leaf below), reflecting its color in nature. The Chinese name is zicai, which means purple vegetable. It is classified among the red algae, which have red to purple pigments. Upon processing to yield the food, which is known in Japan as nori, the red pigments are lost and the final product has a dark greenish color. Nori is used to wrap sushi and for making numerous snacks. The other common food item is the low cost but highly nutritious kelp (kunbu in Chinese; kombu in Japanese). Kombu is usually sold in 5-6-inch dried pieces and can be found in health food stores and Japanese groceries (see sample package below). It is also sold as kombu that cooks quickly, vinegared, shaved kombu that needs little or no cooking, boiled, soy sauce flavored kombu, lightly pickled kombu, and powdered kombu that can be sprinkled on food or used in drinks. Dried kombu needs to be simmered for at least 20 minutes to soften it and flavor the liquid. If used only for flavoring stock, the kombu itself is removed from the liquid at the end of cooking and discarded. A third seaweed widely used in Japan is known as wakame (from Undaria pinnatifida). See the Appendix for information about seaweed utilization in Japan.

MEDICINAL USES

Seaweeds have a salty taste that is an indication that the material can disperse phlegm accumulation, particularly as it forms soft masses, include goiter, the thyroid swelling that indicates severe iodine deficiency. Following are the descriptions of the seaweeds from Oriental Materia Medica (2):

Kunbu (Laminaria and Ecklonia)

  • Essence and Flavor: Salty, Cold
  • Channel Entered: Liver, Stomach, Kidney
  • Actions: Softens hardness, disperses accumulation, resolves phlegm, cleanses heat
  • Applications: Scrofula, goiter, tumor, edema, accumulation, testicular pain and swelling

 


Haizao (Sargassum)

  • Essence and Flavor: Bitter, Salty, Cold
  • Channel Entered: Liver, Stomach, Kidney
  • Actions: Disperses accumulated phlegm, disperses goiter and tumor, delivers water, cleanses heat
  • Applications: Scrofula, goiter, tumor, edema, testicular pain and swelling

 


Zicai (Porphyra)

  • Essence and Flavor: Sweet, Salty, Cold
  • Channel Entered: Lung
  • Actions: Resolves phlegm, softens hardness, dispels heat, promotes diuresis
  • Applications: Goiter, beriberi [leg swelling], edema, urinary infection, sore throat

 

The descriptions for kunbu and haizao are quite similar. Yang Yifan (3) wrote about the differences between these commonly used seaweeds:

Haizao and Kunbu are salty and cold, and enter the liver, lung, and kidney meridians. Both can clear heat, transform phlegm, soften hardness, and dissipate nodules. They can also promote urination and reduce edema. In clinical practice, they are often used together to treat nodules such as goiter and scrofula.

There are some differences between the two herbs. Haizao is stronger in transforming phlegm and dissipating nodules, and it is more suitable for treating goiter and scrofula. Kunbu is stronger in softening hardness and reducing congealed blood; it is more suitable for treating liver-spleen enlargement, liver cirrhosis, and tumors.

One of the best known formulas with the seaweeds is Haizao Yuhu Tang, or the Sargassum Decoction for the Jade Flask (4). This formula of 12 ingredients includes Sargassum, Ecklonia, and Laminaria. It was used to treat a condition of goiter which was so severe it made the throat look like a large flask. However, these seaweeds have been adopted into formulas for treating other soft swellings, including ovarian cysts, breast lumps, lymph node swellings, lipomas, and fat accumulation from simple obesity.

REFERENCES

  1. Secretariat of the Pacific Community Coastal Fisheries Programme, Seaweed's nutritional value, Fisheries Information Newsletter #95, October-December 2000.
  2. Hsu HY, et al., Oriental Materia Medica: A Concise Guide, 1986 Oriental Healing Arts Institute, Long Beach, CA.
  3. Yang Yifang, Chinese Herbal Medicines: Comparisons and Characteristics, 2002 Churchill-Livingstone, London
  4. Bensky D and Barolet R, Chinese Herbal Medicine: Formulas and Strategies, 1990 rev. ed., Eastland Press, Seattle, WA.

 

APPENDIX: JAPAN AND SEAWEED

Following is an outline report on Japanese utilization of seaweed and seaweed products, with data from 1998, except as noted, thanks to the Fisheries Information Newsletter (1).

  • Japan is the world's largest seafood producer, importer and consumer. Annual seafood expenditures totaled 36,425 yen (~$300 U.S.) per capita.
  • Total fresh seaweed production was 623,286 tons for all types of seaweed. But, this is far less than Japan uses for certain seaweeds, particularly those used for industrial processing of specialty seaweed products.
  • Today, Japan is the leading importer of seaweed, while Korea is the premier exporter-with Japan as its main customer.
  • Japanese imports stood at a total of 71,800 tons of fresh seaweed produce valued at over $150 million dollars. It consisted of 40,900 tons of Undaria (a seaweed that grows in the Pacific, from Korea to Japan to Australia) imported from China and Korea worth $65.3 million dollars, plus other varieties worth $38 million dollars.
  • Exports of seaweed from Japan were 1214 tons of miscellaneous seaweed, i.e., processable raw seaweed, dried kombu and nori worth $12 million dollars, plus 59 million dried Porphyra sheets (as used for making sushi) worth $4.6 million dollars. The exports are mainly sold to the USA and Taiwan.
  • There are at least 21 seaweed species used daily in food preparation in Japan. The Japanese consume an average of 4 kg per capita every year (~11 grams per day). There is also a large industry built around the three common colloid compounds derived from seaweed: agar, alginate, and carrageenan. These are used to provide thickening and texture to foods, and for other uses.
  • The agar industry started in Japan over 400 years ago in mountainous regions where, in cold winters, agar would set into a gel. Japan now imports the raw material, the seaweeds Gracilaria and Gelidium, from Chile and South Africa, for a yearly output of 1000-1500 tons of agar in 1994.
  • Alginate extraction in Japan is carried out using Ecklonia and Durvillea imported from Chile and South Africa. The alginate obtained is high-quality material and is used in specific biotech applications. The use of Laminaria spp. for kombu, moreover, has resulted in the import of another raw material so as to extract alginates. Overall production of alginate is about 1000-1500 tons per year (1994 figures).
  • The carrageenan industry is mainly based on direct imports of seaweeds (1,718 tons in 1994). Carragenophytes are also imported from Southeast Asian aquafarms (yielding Eucheuma and Kappaphycus) and from wild stocks in North and South America and Europe (yielding Chondrus and Gigartina).

Seaweed Farming in Japan

Seaweed farming is highly developed in Japanese coastal areas. The main species grown there are Porphyra (nori), Laminaria (kombu) and Undaria (wakame). These alone have accounted for 98% of overall Japanese seaweed production since 1984. The balance is made up of minor traditional (Monostroma, Enteromorpha and Cladosiphon) or experimental (Meristotheca and Grateloupia) crops or wild stock harvests.

Nori

Nori is a traditional food used, for example, to make sushi, which has been a highly profitable crop over the past century. Since the reproduction cycle's summer phase was discovered by Dr Kathleen Drew-Baker, farming has become easier and more lucrative - so much so that no imports have occurred since 1976. Porphyra cultivation is the largest sub-industry in Japanese aquafarming, employing 16,800 workers. In 1998, output stood at 10,326 million nori sheets, i.e. equivalent to 396,615 tons of fresh produce.

Kombu

Kombu is the most widely sold seaweed in Japan. It is an "all-purpose" product although it is most commonly used for bean-curd soup with kombu.

Wild stock still accounts for a major share of output. Several species of the genus Laminaria are used in the Japanese food industry. Laminaria japonica takes the lion's share of kombu production with a raw-material tonnage of 141,875.

Wakame

Undaria pinnatifida cultivation is a relatively recent development in Japan and wakame is served as a luxury food on Japanese and Korean tables. It is highly sought after for bean-curd soup or salads. Raw-material production, standing at 73,508 tons, is unable to meet Japanese demand for wakame.


برگرفته از سایت جلبک شناسی انگلستان 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۳:۳۸ ‎ق.ظ روز پنجشنبه ٢ مهر ۱۳۸۸

عدد واقعی جلبکهای شناسایی شده و مورد تایید جهان

با سلام

عدد واقعی جلبکهای شناسایی شده و مورد تایید جهان بر حسب پاسخ پروفسور مایکل گوئیری مدیریت سایت Algaebase به گونه ای واضح بیان شده است که در پاسخ به برخی تقاضاها از جانب بازدیدکنندگان بلاگ بشرح زیر در اختیارتان قرار میگیرد.

Dear Colleagues

Somebody asked me to make some estimates of macroalgal numbers and I thought that the list might be interested in the answer. There are of course a
number of conceptual difficulties: what's a macroalgal; indeed, what's an alga?

Here are the current numbers according to Kingdom
: Phylum and Class

Chromista:

 Ochrophyta [Phaeophyceae: 1745;

 Xanthophyceae (Vaucheria and Bothrydium only): 406]: 2151

Plantae:

 Rhodophyta: 5900 (not including unicellular species)
Charophyta [Charophyceae 282 and Klebsormidium 42]: 324
Chlorophyta [Bryopsidophyceae 501; Ulvophyceae 887; Trebouxiophyceae (Prasiolales only) 31; Chlorophyceae (Oedogoniales only):
179] 1597

There are thus about 10,000 species of eukaryote macroalgae amongst the 23,500 or so species of eukaryotes in AlgaeBase, of which 3,000 or so
belong in the kingdom Protozoa
(dinoflagellates and euglenoids).

To generalise, chromistan and green-plant-line algae number about 20,000 of which half are macroalgae. Of these 10,000 macroalgae about 8,700 are marine and the remainder are freshwater and/or terrestrial. As a matter of interest, the microalgae seem more even distributed: about half are marine and the other half freshwater.

These numbers are from AlgaeBase, which is of course a work in progress. The numbers for each taxon, or indeed any currently used taxon, can be
checked on:

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۳:۳٢ ‎ق.ظ روز پنجشنبه ٢ مهر ۱۳۸۸

شرح جنس جلبکهای آب شیرین

با سلام

شرح جنس جلبکهای آب شیرین بالغ بر 300 جنس برگرفته از سایت جلبکهای آب شیرین استرالیا که با برخی تغییرات در نرم افزار word قرار گرفته ارائه میگردد. امید است که مورد استفاده علاقمندان قرار گیرد.

لطفا به ادامه مطلب مراجعه نمایید.

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱:٥٧ ‎ب.ظ روز چهارشنبه ٢۸ امرداد ۱۳۸۸

شاخه پروکلروفیتا

این شاخه دارای یک رده پروکلروفیسه و یک راسته پروکلروالز است وتنها سه جنس دارد. جلبکهای این جنس دارای سلولهای به شکل نیم کره تا تخم مرغی هستند. این گروه دارای  کلروفیل a و کلروفیل b به همراه کاروتنوئیدهای یافت شده در گیاهان مانند بتا کاروتن، زئاگزانتین و کریپتوگزانتین بوده و ساختار تیلاکوئید در آنها دارای سازمان دوتایی یا توده های چند تایی است. لذا گمان می‏رود که این گروه دارای جد مشترک یا پلاستیدهای گیاهان و جلبکهای یوکاریوتی باشند (پیرسون 1995). این گیاهان فاقد فیکوبیلین ها میباشند. جنس حدواسط سیانوفیتا و کلروفیتا، پروکلرون نام دارد که به دلیل پروکاریوت بودن در گروه سیانوفیتا جای گرفته است.

منتظر مطالب بیشتر در کتاب آتی تالوفیتا نوشته اینجانب و همکاران باشید.

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ٢:۳٤ ‎ق.ظ روز چهارشنبه ٢۸ امرداد ۱۳۸۸

رده بندی جلبکها لی 2008

رده بندی جلبکها لی 2008

لطفا به ادامه مطلب مراجعه نمایید.

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی ; ساعت ٢:۳٠ ‎ق.ظ روز چهارشنبه ٢۸ امرداد ۱۳۸۸

کلید شناسایی هتروکونتوفیتا Provisional key to Heterokontophyta

by C.S. Lobban & A.D.R. N'Yeurt

 

1. Thallus colonial, consisting of separate individual cells in a common matrix or tube: 2
1. Thallus multicellular, the cells closely adherent to one another: 6

Colonial heterokonts (Sarcinochrysidales and Bacillariphyceae)

2. Colony filamentous: 3
2. Colony globular: 4

3. Filaments comprising corrugated tubes containing very long, needle-like diatom cells: Nitzschia
3. Filaments with cells packed into it, only evident when colonies are kept at ~20C for a day or more, when they round up and separate: Chrysonephos

4. Colonies extremely fragile, disintegrating if picked up: Chrysocystis
4. Colonies rubbery or mucilaginous but easily handled: 5

5. Colonies rubbery golden, spherical cells distributed throughout matrix: Sarcinochrysis
5. Colonies very mucilaginous, mostly colorless with a powdery mustard-yellow surface dust; elongate cells with distinctive apex, on long mucilaginous stalks:
Chrysophaeum

Multicellular (Phaeophyceae)

6. Thallus exclusively filamentous, generally in tufts or turfs: 7
6. Thallus not exclusively filamentous: 11

filamentous

7. Filaments multiseriate (more than one row of cells), parenchymatous; pyramidal or globose or Y-shaped vegetative propagules commonly present: Sphacelaria
7. Filaments uniseriate (one row of cells): 8

8. Filaments tangled into rope-like tufts, “flowerlike” plastids, appearing to have four lobes with a central pyrenoid: Asteronema
8. Filaments not tangled and ropey; appearance fuzzy or silky: 9

9. Plurilocular sporangia commonly present, thallus brown or tan: 10
9. Sporangia entirely absent, zoids formed by cells in tube rounding up (may be induced by cold shock; see
3 above), thallus yellow-brown: Chrysonephos

10. Meristematic zone (dividing cells) distinct, generally at base of long unbranched filament; sporangia mostly stalked: Feldmannia
10. Meristematic zones
intercalary, diffuse, rarely at base of short lateral branch; sporangia mostly sessile (not stalked): Hincksia

11. Thallus of parenchymatous plates partially adherent to substratum or erect flat, terete or globose fronds: 12
11. Thallus crustose, pseudoparenchyma of filaments forming basal layer and erect carpet-like layer: 13

12. Thallus flat fan-shaped to strap-like blades: 14
12. Fronds terete (may be compressed/oval), globular or irregular:
20

crustose, uncalcified

13. Relatively thick crust, difficult to remove, basal layer 1-2 cells, erect filaments tightly adherent: Ralfsia
13. Thin crust easily removed, base 3-4 cells, erect filaments separating easily: Hapalospongidion

flat, erect/prostrate

14. Thallus calcified, erect broad to elongate fans with inrolled margins: Padina
14. Thallus not calcified, margins not inrolled: 15

15. Thallus fan-shaped or tapering markedly from apex to base; apical meristem diffused along the leading edge of the blade: 16
15. Thallus straplike, branches not tapering markedly; apical meristem a single cell or small cluster of cells: 18

16. Medullary cells uniformly rectangular, in stacked tiers: 17
16. Medullary cells not uniformly regular or stacked: Stypopodium

17. Cross section with a central medullary layer of cells bigger than other medullary and cortical cells; thick largely creeping plants often with ventral surface well anchored to substratum: Lobophora
     [Distromium looks like Lobophora but is 2 cells thick; not yet reported]
17. Cross section showing medulla of equal layers: Zonaria

18. Blades with distinct midrib: Dictyopteris
18. Blades without distinct midrib: 19

19. Growth from one apical cell per branch; medulla, at least near the apices, generally a single layer surrounded by a single layer of markedly smaller cortical cells: Dictyota
       (D. cervicornis recently transferred to Canistrocarpus)
19. Growth from multiple apical cells per branch; blades several cells thick without marked distinction between cortex and medulla: Spatoglossum


terete/globose

20. Thallus irregularly-shaped mass without distinct axes: 21
20. Thallus with one or many axes, having some consistent pattern to the branches or blades: 22

21. Thallus sac-like, often lobed, hollow when mature; margins not inrolled: Colpomenia
21. Thallus initially hollow, soon becoming flattened with many holes; margins inrolled: Hydroclathrus

22. Thallus floats when detached from substratum, possessing some type of air bladder; reproductive organs within sunken conceptacles: 23
22. Thallus sinks when detached from substratum, without air-bladders; reproductive organs on surface, not sunken in conceptacles; without leaflike or pyramidal branches: 25

23. Main axes terete, with leaf-like, terete, or pyramidal branches: 24
23. Main axes divided into leaf-like sections, each generally with a vesicle at the center: Hormophysa

24. Blades leaf-like; air bladders bulbous and obvious: Sargassum
24. Blades pyramid-shaped; air-bladders sunken within blades: Turbinaria

25. Tough, erect or matted thalli: 26
25. Thallus lax, irregularly branched; branches hollow, occasionally collapsed and somewhat flattened: Rosenvingea

26. Erect thalli with cryptostomata: Chnoospora
26. Creeping mat of narrow terete or compressed axes, cryptostomata absent: Padina (Vaughaniella stage)

top

Revised April 2006

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ٤:٢۱ ‎ب.ظ روز سه‌شنبه ٢٧ امرداد ۱۳۸۸

Key to Cyanophyta

Key to Cyanophyta

 

by C.S. Lobban & A.D.R. N'Yeurt

لطفا به ادامه مطلب مراجعه فرمایید.

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی ; ساعت ٤:۱۱ ‎ب.ظ روز سه‌شنبه ٢٧ امرداد ۱۳۸۸

Identification of Blue Green Algae

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ٤:٠٥ ‎ب.ظ روز سه‌شنبه ٢٧ امرداد ۱۳۸۸

Medicinal Uses Of Algae

Important warning: please note that all medicines, including herbal medicines, should be taken only on the advice of a qualified practioner. Many beneficial treatements do not work in particular circumstances and may be antagonistic. For all medicines a particular dose and course of treatment must be observed; it should be noted that more of a good treatment is not necessarily better. You should not treat yourself on the basis of any information given here.

In Europe and North America, many claims have been made for the effectiveness of seaweeds on human health. It has been suggested, amongst other things, that seaweeds have curative powers for tuberculosis, arthritis, colds and influenza, worm infestations, and may even improve one's attractiveness to the opposite sex. Digenea (Ceramiales; Rhodophycota) produces an effective vermifugal agent (kainic acid). Recently, aqueous extracts from two red algae belonging to the family Dumontiaceae have been found to inhibit the herpes simplex virus but no tests have been carried out on humans. Carrageenans have been patented as anti-viral agents. Many of the reported medicinal effects of marine algae have not been substantiated. Corallina is being used used in bone-replacement therapy. Stein & Borden (1984) provide a more extensive review.

Some kelps may have polysaccharides that apparently reduce the incidence of breast cancer.

Four seaweeds are commonly used in Chinese medicine:

  • The kelps Saccharina japonica and Ecklonia kurome as sources of kunbu (Saccharina (formerly Laminaria is sometimes called haidai, to distinguish it from Ecklonia and other sources)
  • Sargassum, a brown algae, as the source of haizao; Sargassum is a large genus and several species seem to be in use.
  • Porphyra, a red algae, as the source of zicai

Saccharina and Sargassum have been used in China for the treatment of cancer. Inhibition of cancerous tumours in animals seems to be caused by long-chained polysaccharides. Dry Saccharina stipes have long been used in obstetrics to dilate the cervix and were known as "Laminaria tents" (Stein & Borden, 1984); the dry stipe slowly takes up water and expands; such stipes are also used in China for the insertion of intrauterine devices.

According to Chinese medicine, seaweeds have a salty taste that is an indication that the material can disperse phlegm accumulation, particularly as it forms soft masses, include goitre, the thyroid swelling that indicates severe iodine deficiency. The following are descriptions of seaweeds from Oriental Materia Medica:

  • Kunbu (Saccharina and Ecklonia) (Kombu in Japan)
    • Essence and Flavor: Salty, Cold
    • Channel Entered: Liver, Stomach, Kidney
    • Actions: Softens hardness, disperses accumulation, resolves phlegm, cleanses heat
    • Applications: Scrofula, goiter, tumor, edema, accumulation, testicular pain and swelling
  • Haizao (Sargassum) (Hiziki in Japan; generally Sargassum fusiforme, but other sargassi are used in China)
    • Essence and Flavor: Bitter, Salty, Cold
    • Channel Entered: Liver, Stomach, Kidney
    • Actions: Disperses accumulated phlegm, disperses goiter and tumor, delivers water, cleanses heat
    • Applications: Scrofula, goitre, tumor, edema, testicular pain and swelling
  • Zicai (Porphyra) (Nori in Japan)
    • Essence and Flavor: Sweet, Salty, Cold
    • Channel Entered: Lung
    • Actions: Resolves phlegm, softens hardness, dispels heat, promotes diuresis
    • Applications: Goiter, beriberi (leg swelling), edema, urinary infection, sore throat

The descriptions for kunbu and haizao are quite similar. Yang Yifan wrote about the differences between these commonly used seaweeds: Haizao and Kunbu are salty and cold, and enter the liver, lung, and kidney meridians. Both can clear heat, transform phlegm, soften hardness, and dissipate nodules. They can also promote urination and reduce edema. In clinical practice, they are often used together to treat nodules such as goiter and scrofula. There are some differences between the two seaweeds. Haizao is stronger in transforming phlegm and dissipating nodules, and it is more suitable for treating goiter and scrofula. Kunbu is stronger in softening hardness and reducing congealed blood; it is more suitable for treating liver-spleen enlargement, liver cirrhosis, and tumors. One of the best known formulas with the seaweeds is Haizao Yuhu Tang, or the Sargassum Decoction for the Jade Flask. This formula of 12 ingredients includes Sargassum, Ecklonia, and Saccharina. It was used to treat a condition of goitre which was so severe it made the throat look like a large flask. However, these seaweeds have been adopted into formulas for treating other soft swellings, including ovarian cysts, breast lumps, lymph node swellings, lipomas, and fat accumulation from simple obesity (modified from http://www.itmonline.org/arts/seaweed.htm).

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٢:٥٩ ‎ق.ظ روز سه‌شنبه ٢٧ امرداد ۱۳۸۸

Red Tides and Toxins

Red tides are very much in the news these days. Dinoflagellates are usually regarded as the causative organisms, but not all red tides are caused by dinoflagellates and not all dinoflagellates cause red tides. Furthermore, not all red-tide forming algae are toxic. Even the colour factor is variable: so-called 'red tides' may be brown, yellow, green, etc. Some red tides may be very extensive and several square kilometers of ocean may be affected, even to the extent that satellites have been used to track blooms.

Surface waters of these blooms usually have 1-20 million cells per litre and some are associated with the production of toxins, resulting in fish kills and mortality of other marine organisms.

Toxic blooms of dinoflagellates fall into three categories: (1) blooms that kill fish but few invertebrates; (2) blooms that kill primarily invertebrates; (3) blooms that kill few marine organisms, but the toxins are concentrated within the siphons, digestive glands, or mantle cavities of filter-feeding bivalve mollusc such as clams, oysters, and escallops, causing paralytic shellfish poisoning (known as PSP). The most notorious PSP-causing dinoflagellate on the Pacific coast of north America is Gonyaulax catenella, which produces a neurotoxin called saxitoxin that is 100,000 times more potent than cocaine.

Saxitoxin acts to prevent normal transmission across neuromuscular synapses by interfering with the movement of sodium ions through excitable membranes. Mussels may become too toxic for human consumption when concentrations of Gonyaulax catenella reach only 100-200 cells per millilitre, but concentrations of 23-30,000 cells per litre must be reached before a bloom is apparent to the unaided eye. Normally, the toxicity in the mussels disappears within 2-3 weeks after a bloom, but much longer retention times have been found.

What causes such blooms? A range of factors seem to be involved, but very little definite information is available. In some places there seems to be a strong correlation between the occurrence of upwelling (nutrient-rich waters that comes from deep water) and such blooms. But, in other areas, the blooms have been found to be associated with tidal turbulence. Blooms in other areas seem to be set off by heavy rainfall on the land, the runoff washing phosphates into the sea and also lowering the salinity, which factors seem to favour dinoflagellate growth. It is also thought that Vitamin B12, which is required by most dinoflagellates, may also be washed into the sea from the soil and salt-marsh areas, where it is produced by bacteria and blue-green algae. Humic substances have also been suggested as possible causative agents.

Toxic dinoflagellate blooms are recognized to be initiated from benthic resting stages, the cysts occurring in sediments and serving as 'seed populations' when environmental factors cause their resuspension. Such a cycle of encystment is a regular occurrence for many estuarine and neritic species that cause blooms.

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٢:٥٦ ‎ق.ظ روز سه‌شنبه ٢٧ امرداد ۱۳۸۸

CLASSIFICATION OF THE ALGAE

با سلام

یک مطلب بسیار عالی از رده بندی جلبکها:

Huisman & Saunders : Phylogeny and Classification: 1 PHYLOGENY AND CLASSIFICATION OF THE ALGAE

John M. Huisman1 & Gary W. Saunders2

 

لطفا به ادامه مطلب مراجعه فرمایید.

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٢:٤۳ ‎ق.ظ روز سه‌شنبه ٢٧ امرداد ۱۳۸۸

درسنامه گیاهان آبزی 1

با سلام

درسنامه گیاهان آبزی 1، بنا به خواسته برخی دانشجویان در وبلاگ قرار داده می شود. لطفا با ارائه نظرات سازنده خود بنده را در بهبود این اثر یاری فرمایید.

لطفا به ادامه مطلب مراجعه نمایید.

 

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی ; ساعت ٩:۱٧ ‎ب.ظ روز دوشنبه ٢٦ امرداد ۱۳۸۸

درسنامه مبانی جلبک شناسی

با سلام

درسنامه مبانی جلبک شناسی که بطور خلاصه جهت استفاده دانشجویان و آمادگی برای کنکور کارشناسی ارشد تهیه شده و به همکاری یک از دانشجویان تایپ شده است به حضورتان معرفی میگردد. لازم به ذکر است که تایپ این مجموعه دارای اشکالاتی است که در صورت داشتن وقت آزاد اصلاح خواهند شد.

لطفا به ادامه مطلب مراجعه نمایید.

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ٩:۱۱ ‎ب.ظ روز دوشنبه ٢٦ امرداد ۱۳۸۸

TAXONOMY/SPECIES PLANTS (COMPRISING FLOWERING PLANTS, ALGAE, FUNGI, LICHENS)

TAXONOMY/SPECIES

PLANTS (COMPRISING FLOWERING PLANTS, ALGAE, FUNGI, LICHENS)

 

 

compiled by J.J. Bolton

 

 

 

Introduction

The photosynthetic organisms in the sea are from a wide variety of groups. The group most familiar on land, the flowering plants, are important only in certain coastal fringe environments (particularly estuaries), whereas rocky seashores and the sea itself have photosynthetic organisms which come from a variety of different groups. In the past most of the latter have been lumped together as ‘algae'. The ‘green algae' (Chlorophyta) include the green seaweeds and a wide variety of smaller algae, and are true green plants, related to the flowering plants. Other algae comprise at least twelve ‘Divisions' (equivalent to zoological Phyla). The broad term ‘algae' has also traditionally included the ‘blue-green algae', which are true bacteria (the Cyanobacteria), and are important in many marine environments. The fungi, though not photosynthetic, have often in the past between treated as ‘plants', and of course this is even more confused by the lichens, which are a symbiosis of an alga and a fungus. Molecular phylogenetic studies are revealing that relationships between these organisms are much more complicated than first thought, and that there are many more groups of living things than just ‘plants' and ‘animals'. For example one Division, the Heterokontophyta, now comprises a remarkable diversity of organisms, including brown algae (e.g. Ecklonia) and diatoms as well as a group that was traditionally in the fungi (the Oomycetes). The organisms discussed below are thus grouped primarily ecologically, rather than phylogenetically.

 

لطفا به ادامه مطلب مراجعه نمایید 

 

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی ; ساعت ٩:٠٢ ‎ب.ظ روز دوشنبه ٢٦ امرداد ۱۳۸۸

Phylogeny and groupin of Algae Patterson 1999

                              Algae

 

 

 

  A polyphyletic grouping of organisms with chloroplasts. In a phylogenetic sense obsolete because the group is both polyphyletic and paraphyletic. It is still in widespread use in some quarters. Now divided into…….

 

 

 

 1. Blue-green algae (bacteria),

Bacterium: organisms with DNA as a loop not included in a nucleus. Also called prokaryotes. Distinguished from eukaryotes which have DNA in a membrane bounded nucleus

Blue-green algae: the cyanobacteria - a type of prokaryote. Not included

 

 

 

 

   2. Cryptomonads,

Cryptomonads - group of flagellates including autotrophs, heterotrophs and autotrophs., not diverse, but abundant and common. Two genera known to be exclusively heterotrophic (Chilomonas and Goniomonas) are heterotrophic.

 

 

 

 

   3. Dinoflagellates (an alveolate group),

Alveolates: A group of protists all with flattened sacs, alveoli, under the cell surface; comprised of the ciliates, dinoflagellates, and the apicomplexa

 

 

 

4. Euglenids ( a group of euglenozoa)

Euglenids - group of autotrophs, heterotrophs and mixotrophs, if autotrophic with plastids with chlorophyll B; assigned to the Euglenozoa.

Euglenozoa: A grouping of flagellates including kinetoplastids, euglenids, diplonemids and Postgaardi.

 

 

 

 

 

5. Stramenopiles, various (also referred to as chromophytes, chrysophytes, heterokonts - including the diatoms and brown algae),

Stramenopiles, a grouping of organisms with tripartite hairs usually associated with the flagella, or derived from such organisms. Large group with an array of trophic strategies, but including the actinophryids, bicosoecids Blastocystis, Chlamydomyxa, chromulinids, chrysophytes sensu lato, Commation, Developayella, diatoms, dictyochales, Diplophrys, hyphochytridiomycetes, labyrinthulids, oomycetes, opalines, Parmales, pedinellids, Pendulomonas, phaeothamniids, brown algae, Pirsonia, proteromonads, raphidiophytes, Reticulosphaera, Rhizochromulina, Siluania, synurids, pelagophytes, thrausochytrids, and the xanthophytes.

Chromophytes: a term used variously to refer to some or all of those algae with chloroplasts having chlorophylls a and c (i.e. stramenopiles, cryptomonads, haptophytes and dinoflagellates)

 

 

 

 

6. Haptophytes (= prasinophytes),

Haptophytes: also called prymnesiophytes, mostly small marine algae with two flagella and an additional locomotor organelle, the haptonema. Includes the coccolithophorids - being those species with calcareous scales. a few taxa are heterotrophic.

Prasinophytes: A type of green alga, only found in marine conditions, part of the Viridiplantae

7. Green algae (viridaeplantae),

Plants: An imprecise term used varyingly from anything with plastids, or more restrictively to that subset being the multicellular taxa with plastids, or more restrictively to the multicellular taxa with plastids with chlorophyll B and cellulosic cell walls, or more restrictively to the sister group to the Charales. The term is here regarded as descriptive and not taxonomic. The most restrictive concept is here part of the Viridiplantae.

Viridaeplantae: the evolutionary lineage of green (with chlorophyll B) algae and plants that include the prasinophytes, chlorophytes and the land plants

 

 

 

 

8. Red algae

Red algae: mostly multicellular algae with phycobilin rich plastids providing generally a pink or red colour.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algae: Protists with Chloroplasts

David J. Patterson

The algae are a polyphyletic and paraphyletic group of organisms. They are defined in differing ways, but are usually considered to be the photosynthetic organisms excepting plants. Using the term 'plants' in its most restrictive fashion, the algae are then photosynthetic organisms excepting the sister group to the Charales (i.e. the land plants). Such a definition allows inclusion of photosynthetic prokaryotes such as the cyanobacteria. The definition applied here is that the algae is that artificial subset of the photosynthetic eukaryotes which excludes the sister group to the Charales (land plants).

The algae are the dominating primary producers in aquatic ecosystems, on unstable substrates (muds and sands) and in intertidal marine habitats. Algae are commonly exploited as foodstuffs, food additives, toothpastes, etc.

The ability for eukaryotes to carry out photosynthesis was made possible by one or more symbiotic associations between heterotrophic eukaryotes and photosynthetic prokaryotes (or their descendents). There were several primary symbioses between eukaryotes and blue green algae. In one lineage, the photosynthetic organism lost much of its genetic independence and became functionally and genetically integrated as chloroplasts within the host cell. Modern chloroplasts, also called plastids, are bounded by two or more membranes, and most usually lie free in the cytoplasm, but in some cases they may be located within a fold of the nuclear envelope, or may be associated with the cytoplasm and residual nucleus of a eukaryotic endosybiont. The descendents of some of these primary plastids have gone on to form further associations. At least two types of protists (chloroarachniophytes and cryptomonads) have acquired 'plastids' by forming symbioses with eukaryotic algae. This are referred to as secondary symbioses.

Algae are distinguished on a number of different characteristics. The most important ones are:

  • the colour of the plastids (more correctly the combination of photosynthetic pigments that are present in the plastid)
  • the presence of flagella (and if so how many, how do they insert in the cell and how do they beat)
  • is the cell surrounded by extracellular material? If so, what is that material - organic or inorganic, a continuous wall or a layer of scales)
  • are the cells motile or not?
  • do they occur singly, in colonies, filaments or exhibit differentiation that would allow them to satisfy the criterion of multicellularity?

 

Algal protists occur in 8 lineages. These are summarised below.

 

Groups of Algae

GROUP

COMPOSITION

ORGANIZATION

MAJOR PIGMENTS

ALVEOLATES

Contains some algae, autotrophic dinoflagellates, diverse, Peridinium, Symbiodinium, Ceratium

unicellular, colonial, syncytial; free-living, symbiotic and parasitic

chlorophylls a and c, some symbionts

CHLORARACHNIOPHYTES

A few genera of amoeboid organisms all with symbiotic algae, Chlorarachnion

syncytial, free-living

Chlorophyll b

CRYPTOMONADS

About 12 genera of flagellates, Cryptomonas

single cells, rarely forming colonies, some are endobiotic

Chlorophylls a and c, phycobilins

EUGLENIDS

about half of the genera (35) contain members with green chloroplasts, flagellates, Euglena, Trachelomonas

single cells

Chlorophyll b

GLAUCOPHYTES

Several genera of flagellated and non-flagellated protists with similar phycobilin-rich symbionts, e.g. Glaucocystis, Cyanophora

flagellated and non-flagellated cells

Phycobilin

HAPTOPHYTES

Diverse, with many genera, all or all bar one genera with plastids, with naked species and those with scales (coccolithophores)

single cells, some are endosymbionts

Chlorophylls a and c

RED ALGAE (Rhodophyta)

All species are regarded as algal

free-living and parasitic, single celled, and multicellular

Phycobilins

STRAMENOPILES

Most but not all stramenopiles are algae, the group includes diatoms, brown algae, synurophytes and other 'chrysophytes'

single celled, colonial and multicellular, free-living and parasitic

Chlorophylls a and c

VIRIDAEPLANTAE

The green algae, all but a few genera are algal, prasinophytes, chlorophyta (e.g. volvocalean algae, conjugatopohytes, Ulvales, Charales)

single celled, colonial and multicellular, free-living

Chlorophyll b

 

Genera of algal protists for which no clear ultrastructural identity has been developed (after Patterson, 1999):

Adinomonas

Archaeosphaerodiniopsis

Aurospora

Berghiella

Bjornbergiella

Boekelovia

Camptoptyche

Chalarodora

Chlamydomyxa

Copromonas

Cyanomastix

Dinoasteromonas

Dinoceras

Glaucocystopsis

Goniodinium

Heteromastix

Hillea

Histiophysis

Isoselmis

Melanodinium

Meringosphaera

Monodus

Nephrodinium

Pachydinium

Peliainia

Petasaria

Phialonema

Pleuromastix

Pseudoactiniscus

Strobilomonas

Syncrypta

Tetragonidium

Thaulirens

Thaumatodinium

Thylakomonas

Triangulomonas

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۸:٥٦ ‎ب.ظ روز دوشنبه ٢٦ امرداد ۱۳۸۸

دورانهای زمین شناسی

Phanerozoic Eon
(543 mya to present)

Cenozoic Era
(65 mya to today)

Quaternary (1.8 mya to today)
       Holocene (10,000 years to today)
       
Pleistocene (1.8 mya to 10,000 yrs)
Tertiary (65 to 1.8 mya)
       Pliocene (5.3 to 1.8 mya)
       
Miocene (23.8 to 5.3 mya)
       
Oligocene (33.7 to 23.8 mya)
       
Eocene (54.8 to 33.7 mya)
       
Paleocene (65 to 54.8 mya)

Mesozoic Era
(248 to 65 mya)

Cretaceous (144 to 65 mya)
Jurassic (206 to 144 mya)
Triassic (248 to 206 mya)

Paleozoic Era
(543 to 248 mya)

Permian (290 to 248 mya)
Carboniferous (354 to 290 mya)
       Pennsylvanian (323 to 290 mya)
       Mississippian (354 to 323 mya)

Devonian (417 to 354 mya)
Silurian (443 to 417 mya)
Ordovician (490 to 443 mya)
Cambrian (543 to 490 mya)
        Tommotian (530 to 527 mya)

Precambrian Time
(4,500 to 543 mya)

Proterozoic Era
(2500 to 543 mya)

Neoproterozoic (900 to 543 mya)
       Vendian (650 to 543 mya)
Mesoproterozoic (1600 to 900 mya)
Paleoproterozoic (2500 to 1600 mya)

Archaean
(3800 to 2500 mya)

Hadean
(4500 to 3800 mya)

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٢:٠٤ ‎ق.ظ روز پنجشنبه ٢٦ دی ۱۳۸٧

نکاتی راجع به ثبت رکوردها و پراکنش گونه های جلبکی ایران

با سلام

 

 

با توجه به ثبت مجدد برخی مقالات و گونه های رکورد شده از ایران در سایت Algaebase.org لازم می داند که اساتید، پژوهشگران و دانشجویان عزیز در استفاده از مطالب این سایت در بخش پراکنش گونه ها در ایران به نکات زیر توجه داشته باشند:

1- ثبت رکوردها و گزارشات گونه ها در ایران تنها بر اساس اطلاعات موجود در مقالات بوده و اینجانب و سایت مذکور هیچ گونه مسئولیتی در قبال صحت و سقم اطلاعات مقالات ندارند.

2- برخی گونه ها و جنسهای ارائه شده در مقالات با نامهای معتبر و یا حداقل با نامهای ارائه شده در منابع معتبر سازگار نبوده و علاوه بر برخی  اشکالات تایپی، برخی اشکالات در شناسایی و نامگذاری نیز مشهود است، لذا در صورت مشاهده این موارد و یا مغایرت نامهای ارائه شده در مقالات و سایت مذکور، می توانید از بخش search سایت، نامهای معتبر گونه ها را تطبیق نمایید.

3- اساتید، پژوهشگران و دانشمندان بزرگواری که اینجانب افتخار ثبت مقالات آنان را در سایت داشته ام در صورت نیاز به اصلاح موارد ارائه شده می توانند با پست الکترونیک بنده یا ارائه نظر در زیر همین مطلب، فرمایشات خود را به بنده منعکس نمایند.

4- همواره منتظر ارائه نظرات ارزشمند شما دوستان و سروران گرامی و نیز ثبت مقالات و یافته های جدید شما دوستان می باشم.

5- موارد قابل ارائه در سایت در بخش پراکنش ایران شامل مقالات کامل در همایش ها، مقالات در مجلات داخلی و خارجی، پایان نامه، کتاب و مانند آن می باشد.

 

با احترام

رضا رمضان نژاد قادی     

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٢:٢٢ ‎ق.ظ روز سه‌شنبه ٢٤ دی ۱۳۸٧

Anabaenopsis

General appearance of alga? Unbranched filaments; or Blue-green algae - cells without organelles.

Colour? green; or blue; or black.

Habitat freshwater; or terrestrial.

Aquatic type? lake; or pond.

Free-living or attached? free-living.

Motile? Not motile.

Is mucilage or gelatinous material present? Mucilage present but not stratified.

Filament: Branching type not recorded.

Filaments in bundles? not recorded.

Filament: Cell arrangement cells abutting.

Filament: Filament diameter not recorded.

Cell: Individual cell shape globose or spherical; or cylindrical.

Cell: Is there a median constriction (isthmus)? Absent.

Cell: Do the cells bear spines or cellular extensions? Absent.

Cell: How many flagella per cell? Absent.

Cell: Is a red eyespot conspicuous? no.

Cell: Heterocytes present and terminal in position.

Cell: Akinetes present and intercalary in position.

Cell: Cell length not recorded.

Cell: Cell diameter 3–10 µm.

Cell: How many pyrenoids per plastid? 0.

Cell: How many plastids? 0.

Cell: Plastid shape? not recorded.

Cell: Position of plastid in cell? not recorded.

Colony: Are remnants of the mother cell wall present or is the entire mother cell wall persistent? not recorded.

Colony: cell arrangement not recorded.

Colony: Shape of colony? not recorded.

Colony: Are cells or groups of cells connected by mucilaginous threads? No.

Colony: Cells in one layer or throughout not recorded.

Capable of forming blooms? Yes, unknown if harmful or toxic.

Distribution Northern Territory; or South Australia; or Queensland; or New South Wales; or Victoria.

Classification: Division Cyanobacteria (Blue-green algae).

Classification: Class Cyanophyceae.

Classification: Family Nostocaceae.

Reference Baker et al. (1999:29), Smith (1950:583), Bourelly (1970:420), Ling et al. (2000:26), Dillard (1999:112), Day et al. (1995:206), Entwisle et al. (1999c).

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٠:۳٤ ‎ق.ظ روز یکشنبه ۱٢ آبان ۱۳۸٧

Agmenellum

General appearance of alga? Soft or firm colony (many cells or filaments); or Blue-green algae - cells without organelles.

Colour? green; or blue; or colourless.

Habitat freshwater.

Aquatic type? not recorded.

Free-living or attached? free-living.

Motile? Not motile.

Is mucilage or gelatinous material present? Mucilage present in obvious concentric rings around each cell or group of cells in the colony.; or Mucilage present but not stratified.

Filament: Branching type not recorded.

Filaments in bundles? not recorded.

Filament: Cell arrangement not recorded.

Filament: Filament diameter not recorded.

Cell: Individual cell shape globose or spherical; or ovoid.

Cell: Is there a median constriction (isthmus)? Absent.

Cell: Do the cells bear spines or cellular extensions? Absent.

Cell: How many flagella per cell? Absent.

Cell: Is a red eyespot conspicuous? no.

Cell: Heterocytes absent.

Cell: Akinetes absent.

Cell: Cell length not recorded.

Cell: Cell diameter not recorded.

Cell: How many pyrenoids per plastid? 0.

Cell: How many plastids? 0.

Cell: Plastid shape? not recorded.

Cell: Position of plastid in cell? not recorded.

Colony: Are remnants of the mother cell wall present or is the entire mother cell wall persistent? Mother cell wall absent.

Colony: cell arrangement Cells in groups greater than 4 cells.

Colony: Shape of colony? Rectangular.

Colony: Are cells or groups of cells connected by mucilaginous threads? No.

Colony: Cells in one layer or throughout on periphery or surface layer of colony.

Capable of forming blooms? Not observed.

Distribution Queensland; or New South Wales.

Classification: Division Cyanobacteria (Blue-green algae).

Classification: Class Cyanophyceae.

Classification: Family Microcystaceae.

Reference Komárek et al. (1999), Day et al. (1995:199), Entwisle et al. (1999c).

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٠:۳۳ ‎ق.ظ روز یکشنبه ۱٢ آبان ۱۳۸٧

Actinotaenium

General appearance of alga? Non-motile microalgae (single cells).

Colour? green.

Habitat freshwater; or terrestrial.

Aquatic type? lake; or pond; or bogs; or puddles and ditches.

Free-living or attached? free-living.

Motile? not recorded.

Is mucilage or gelatinous material present? Absent.

Filament: Branching type not recorded.

Filaments in bundles? not recorded.

Filament: Cell arrangement not recorded.

Filament: Filament diameter not recorded.

Cell: Individual cell shape globose or spherical; or ellipsoid; or ovoid.

Cell: Is there a median constriction (isthmus)? Shallow furrow.

Cell: Do the cells bear spines or cellular extensions? Absent.

Cell: How many flagella per cell? Absent.

Cell: Is a red eyespot conspicuous? no.

Cell: Heterocytes absent.

Cell: Akinetes absent.

Cell: Cell length 20–260 µm.

Cell: Cell diameter 7–110 µm.

Cell: How many pyrenoids per plastid? 2–10.

Cell: How many plastids? 1.

Cell: Plastid shape? star-shaped.

Cell: Position of plastid in cell? Axial; or Parietal.

Colony: Are remnants of the mother cell wall present or is the entire mother cell wall persistent? Mother cell wall absent.

Colony: cell arrangement not recorded.

Colony: Shape of colony? not recorded.

Colony: Are cells or groups of cells connected by mucilaginous threads? No.

Colony: Cells in one layer or throughout not recorded.

Capable of forming blooms? Not observed.

Distribution Western Australia; or Northern Territory; or South Australia; or Queensland; or New South Wales; or Victoria; or Tasmania.

Classification: Division Chlorophyta (Green Algae).

Classification: Class Zygnematophyceae.

Classification: Family Desmidaceae.

referred to Cosmarium, Cylindrocystis, Penium and others.

Species and distribution Nine species reported from Australia.

Reference Croasdale & Flint (1988: 33-39), Dingley (2001), Ling et al. (2000:163), Day et al. (1995:77), Entwisle et al. (1999c

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٠:۳٢ ‎ق.ظ روز یکشنبه ۱٢ آبان ۱۳۸٧

Actinastrum

General appearance of alga? Non-motile microalgae (single cells); or Soft or firm colony (many cells or filaments).

Colour? green.

Habitat freshwater.

Aquatic type? lake; or pond.

Free-living or attached? free-living.

Motile? Not motile.

Is mucilage or gelatinous material present? Absent.

Filament: Branching type not recorded.

Filaments in bundles? not recorded.

Filament: Cell arrangement cells abutting.

Filament: Filament diameter not recorded.

Cell: Individual cell shape spindle-shaped.

Cell: Is there a median constriction (isthmus)? Absent.

Cell: Do the cells bear spines or cellular extensions? Absent.

Cell: How many flagella per cell? Absent.

Cell: Is a red eyespot conspicuous? no.

Cell: Heterocytes absent.

Cell: Akinetes absent.

Cell: Cell length 15–24 µm.

Cell: Cell diameter 2–3 µm.

Cell: How many pyrenoids per plastid? 1.

Cell: How many plastids? 1.

Cell: Plastid shape? discoid or plate-like.

Cell: Position of plastid in cell? Parietal.

Colony: Are remnants of the mother cell wall present or is the entire mother cell wall persistent? Mother cell wall absent.

Colony: cell arrangement Cells in groups of 2-4.

Colony: Shape of colony? not recorded.

Colony: Are cells or groups of cells connected by mucilaginous threads? No.

Colony: Cells in one layer or throughout throughout colony.

Capable of forming blooms? Not observed.

Distribution Northern Territory; or South Australia; or Queensland; or New South Wales; or Victoria.

Classification: Division Chlorophyta (Green Algae).

Classification: Class Chlorophyceae.

Classification: Family Scenedesmaceae.

Reference Smith (1950: 275), Entwisle et al. (1997:32), Whitford et al. (1973:55), Dillard (1999:108), Prescott (1951:281), Ling et al. (2000:106), Day et al. (1995:170), Entwisle et al. (1999c).

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٠:۳۱ ‎ق.ظ روز یکشنبه ۱٢ آبان ۱۳۸٧

دایرکتوری تالابهای ایران

با سلام

مطلب زیر دایرکتوری تالابهای ایران نام داشته و اطلاعاتی در مورد تمامی تالابهای ایران ارائه می نماید که شامل اطلاعات توپوگرافی، جغرافیایی، هوا و اقلیم، زمین شناسی، هیدرولوژی و مانند آن است.

 

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی ; ساعت ٩:٤۸ ‎ق.ظ روز شنبه ۱۱ آبان ۱۳۸٧

چکیده گزارش نهایی طرح تحقیقاتی سال 1386 : مطالعه جلبکهای اپی پلیک تالاب گمیشان

خلاصه

تالاب بین المللی گمیشان در شمال شرقی کشور در حوزه شهرستان ترکمن با گسترش شمالی جنوبی قرار داشته و از سمت غرب توسط تپه ماهورها از دریای خزر جدا می شود. با توجه به اهمیت جلبکهای کف زی در تولید و فتوسنتز، تغذیه بی مهرگان و آبزیان، تعیین آلودگی آبها با نقش نشانگر زیستی و تاثیر بر تنوع زیستی، جلبک های اپی پلیک این تالاب در یک دوره یکساله از تابستان 1385 تا تابستان 1386 مورد مطالعه قرار گرفت. 12 ایستگاه بر حسب جریان آب، عمق و توپوگرافی اکوسیستم، جنس بستر و مساحت عرصه تعیین شدند. جلبکهای اپی پلیک مطابق با الگوی متداول، بطور تصادفی از طریق کشیدن یک لوله شیشه ای به قطر 1 سانتی متر در طول رسوبات کف اکوسیستم جمع آوری شدند این نخستین مطالعه فلوریستیک جلبکها در این تالاب بوده است. 39 تاکسون از جوامع اپی پلیک مورد شناسایی قرار گرفت که 24 مورد متعلق به باسیلاریوفیتا، 8 مورد متعلق به کلروفیتا و 7 مورد متعلق به سیانوفیتا بودند. تمامی گونه های گزارش شده، گزارش جدیدی برای تالاب گمیشان بشمار می آیند.

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱۱:۳٠ ‎ق.ظ روز یکشنبه ٢۸ مهر ۱۳۸٧

چکیده گزارش نهایی طرح تحقیقاتی سال 1385 در تالاب میانکاله

خلاصه

 

 خلیج گرگان یا تالاب میانکاله با وسعت تقریبی 23800 هکتار در منتهی الیه جنوب شرق دریای خزر واقع شده است. تالاب میانکاله حدود 60 کیلومتر طول و به طور میانگین 12 کیلومتر عرض دارد. بستر تالاب لجنی بوده و تنها در سمت شمال دارای شن و ماسه نیز می باشد. شیرین تر بودن آب در انتهای غربی تالاب و حضور بستر لجنی و باتلاقی، موجب تنوع بیشتر گونه های آب شیرین گیاهی و جلبکی شده است. در این تحقیق بررسی لیست فلوریستیک گونه های جلبکی تالاب میانکاله ( خلیج گرگان) مد نظر بوده است. به این منظور پس از جمع آوری سالیانه گونه های جلبکی آبزی در چهار فصل از تیر ماه 1385 تا خرداد 1386، و تثبیت آنها در محلولهای تثبیت کننده معمول، به شناسایی تمامی تاکسونهای تثبیت شده پرداخته شد. در این بررسی تعداد 126 گونه و تقسیمات زیر گونه ای از جلبک ها متعلق به 57 جنس و 8 شاخه مورد شناسایی قرار گرفتند. با توجه به نتایج حاصل از این پژوهش، تالاب میانکاله از نظر تنوع گونه های جلبکی دارای سیستم یوتروفیک می باشد.

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱۱:٢٦ ‎ق.ظ روز یکشنبه ٢۸ مهر ۱۳۸٧

فیلوژنی و رده بندی جلبکهای سبز

فیلوژنی و رده بندی جلبکهای سبز

فراوانترین فسیل های دوران پروتوزوئیک در میان یوکاریوتها متعلق به کلروفیتاست. جنس حد واسط سیانوفیتا و کلروفیتا، پروکلرون نام دارد که به دلیل پروکاریوت بودن در گروه سیانوفیتا جای گرفته است. اولین راسته کلروفیتا، Volvocales نام دارد. این راسته در سه دودمان سایر گروههای جلبکهای سبز را به وجود آورده است. در دودمان اول بیشتر انواع سنوسیتی با دیواره آهکی قرار می گیرند. در این دودمان رشد رویشی تنها از طریق افزایش حجم سلول انجام شده و تقسیم سلولی وجود ندارد. دودمان دوم فاقد تاژک بوده و پلاستیدهای بزرگ و غالبا لبدار دارند. دیواره سلولی در داخل سلولزی و در خارج از جنس پکتین است. این گروه منشا کانژوگالهاست. در دودمان سوم تاژک ها باقی مانده و بسیاری از گونه ها در زندگی خود مرحله پالملوئیدی یا کلامیدوموناس شکل را می گذرانند. این دودمان به کلادوفورال ها و اولوتریکال ها ختم می شود ( پیرسون، 1995). کلروفیتا بر اساس پیکره رویشی، وجود زئوسپور و نیز چرخه زندگی تقسیم بندی می‌شوند. بولد شاخه کلروفیتا را در یک رده با نام کلروفیسه و هفده راسته قرار داده است.

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۳:٠۱ ‎ب.ظ روز چهارشنبه ٢٤ مهر ۱۳۸٧

Nostoc

Nostoc Vaucher ex Bornet et Flahault 1886: 181.

Type species: Nostoc commune Vaucher ex Bornet & Flahault

 

Source: Komárek, J., Kling, H. & Komárková, J. (2003). Filamentous Cyanobacteria. In: Freshwater Algae of North America. (Wehr, J.D. & Sheath, R.G. Eds), pp. 177-196. San Diego: Academic Press.

 

Classification: Empire Prokaryota Kingdom Bacteria Subkingdom Negibacteria Phylum Cyanobacteria Class Cyanophyceae Subclass Nostocophycideae Order Nostocales Family Nostocaceae Genus Nostoc

 

Description: Thallose; thallus micro- or macroscopic gelatinous, amorphous or spherical, later irregularly spherical, lobate, smooth or warty on the surface, filamentous or forming flat gelatinous or "paper like" (when dry) colonies, usually with distinct periderm on the colonial surface. Filaments within colony irregularly coiled and loosely or densely agglomerated, sometimes more gathered in peripheral layer; sheaths around trichomes present, but visible usually only in the periphery of colony or in young colonies, wide, fine mucilaginous, confluent with colonial mucilage, sometimes yellowish-brown. Trichomes isopolar, of the same width along the whole length, apical cells morphologically not different from other cells; cells cylindrical, barrel-shaped up to almost spherical (forming moniliform trichomes; variability of cell size and shape sometimes distinct in one and the same species). Heterocytes solitary, develop in trichomes terminally or intercalary (their frequency or absence is dependent on nitrogen metabolism); trichomes in principle metameric. Akinetes arise apoheterocytic, oval, little larger than cells; almost all cells between heterocytes change successively in akinetes towards heterocytes. Nostoc has special life (vegetation) cycle, during which forms several special and characteristic stages (Mollenhauer 1986, Lazaroff 1972, Komárek and Anagnostidis 1989). From several described subgenera are probably acceptable typical Nostoc and Amorphonostoc, which differ in morphology of colonies (Amorphonostoc has no periderm) and by a type of life cycle, which is simpler in Amorphonostoc. Cells divide crosswise. Reproduction by motile hormogonia, which differentiate from trichomes by disconnection at heterocytes, by dissociation of thallus and by akinetes, respectively. Different species grow in freshwater biotopes, epipelic, epilithic and epiphytic in unpolluted lakes, ponds and pools, many species grow in different soils (especially the subgenus Amorphonostoc) or on their surface. N. flagelliforme from Chinese semideserts is edible. Several species are important components of subpolar soil or water biotopes and nitrogen fixers. Few species grow endophytically in fungi (Geosiphon), mosses, liverworts, ferns and vascular plants (roots of Cycas, Gunnera). In world collections are numerous isolated strains, which are, however, insufficiently identified

 

Numbers of names and species: There are 331 species names in the species database at present, of which 55 is/are flagged as current.

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٠:۱٢ ‎ب.ظ روز چهارشنبه ٢۳ امرداد ۱۳۸٧

Anabaena

Anabaena Bory de Saint-Vincent ex Bornet & Flahault 1886: 224.

Type species: Anabaena oscillarioides Bory de Saint-Vincent

 

Currently accepted name for type species:Anabaena pseudoscillatoria Bory de Saint-Vincent

 

Source: Kom?rek, J., Kling, H. & Kom?rkov?, J. (2003). Filamentous Cyanobacteria. In: Freshwater Algae of North America. (Wehr, J.D. & Sheath, R.G. Eds), pp. 177-196. San Diego: Academic Press.

 

Classification: Empire Prokaryota Kingdom Bacteria Subkingdom Negibacteria Phylum Cyanobacteria Class Cyanophyceae Subclass Nostocophycideae Order Nostocales Family Nostocaceae Genus Anabaena

 

Description: Filaments solitary or in free clusters (subg. Dolichospermum) or in macroscopic mats on the substrate (subg. Anabaena), usually with coiled and tangled, sometimes up to screw-like coiled, rarely with more or less parallel oriented trichomes, along the length of the same width or slightly narrowed to the ends, with more or less deep constrictions at crosswalls, always without firm sheaths, but sometimes with mucilaginous, hyaline, colorless, often diffluent envelopes; trichomes uniseriate, often moniliform, isopolar, always metameric. (Heterocytes develop solitary and intercalary in more or less certain distances from one another; in one developed trichome always 3-9, rarely more, heterocytes.) Cells cylindrical, barrel-shaped or spherical, shorter to longer than wide, pale or bright blue-green or olive-green, containing aerotopes (subg. Dolichospermum) or without aerotopes, but sometimes with granular content (subg. Anabaena); terminal cells sometimes slightly elongated, conical, conical rounded or spherical, not vacuolized. Heterocytes spherical, widely oval or cylindrical, sometimes elongated, usually slightly greater than vegetative cells. Akinetes spherical, oval or cylindrical, solitary or several in a row, intercalary, developing always paraheterocytic, close to heterocytes from both sides, or slightly distant from them. Cells divide transversely and grow to the original size before the next division; without meristematic zones. Reproduction by trichome fragmentation (usually at heterocytes) and by akinetes. Planktonic species, sometimes forming aquatic blooms (mainly from the subg. Dolichospermum) or in mats covering different substrates, aquatic plants, submerged wood, stones, etc. Several species benthic or in soils, several are known from saline (brackish) habitats. Many species have limited geographic areas of distribution, but this genus is widespread and common.

 

Numbers of names and species: There are 526 species names in the AlgaeBase species database at present, of which 94 is/are flagged as current.

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٠:٠٦ ‎ب.ظ روز چهارشنبه ٢۳ امرداد ۱۳۸٧

چرخه زندگی در جلبکها

چرخه زندگی در جلبکها

هر موجود زنده در طی حیات خود مراحل متفاوتی را طی می‌کند تا نسل جدیدی را که مشابه خود هستند بوجود آورد. این مراحل را چرخه زندگی Life cycle  گوییم. سه نوع اصلی چرخه حیاتی در جلبکها دیده می‌شود؛

لطفا به ادامه مطلب مراجعه نمایید:

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱:٠٧ ‎ب.ظ روز یکشنبه ٢٥ فروردین ۱۳۸٧

تولید مثل جلبکها

 

تولید مثل جلبکها 

تولید مثل جلبکها به سه صورت رویشی، غیر جنسی و جنسی انجام می‌گیرد:

لطفا به ادامه مطلب مراجعه نمایید.

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی ; ساعت ٤:۱٩ ‎ب.ظ روز یکشنبه ۱۸ فروردین ۱۳۸٧

معرفی گونه های جلبکی رکورد شده از ایران/ بخش اول

 

 

Species Name

Distribution Geography

Acanthophora muscoides (Linnaeus) Bory de Saint-Vincent

Iran (Sohrabipour & Rabii 1999).

Acanthophora nayadiformis (Delile) Papenfuss

Iran (Silva, Basson & Moe 1996).

Acanthophora spicifera (M. Vahl) Børgesen

Iran (Silva, Basson & Moe 1996, Sohrabipour & Rabii 1999).

Acetabularia moebii Solms-Laubach

Iran (Sohrabi pour, J. & Rabii, R., 1996, Sohrabipour & Rabii 1999, Sohrabipour & Rabii 1999).

Achnanthes clevei Grunow

Iran (Jamaloo et al.. 2006).

Achnanthes deflexa C. W. Reimer

Iran (Jamaloo et al.. 2006).

Achnanthes lanceolata var. dubia Grunow

Iran (Jamaloo et al.. 2006).

Achnanthes linearis (W. Smith) Grunow

Iran (Jamaloo et al.. 2006).

Achnanthes pseudoswazi J.R. Carter

Iran (Jamaloo et al.. 2006).

Achnanthidium delicatulum Kützing

Iran (Jamaloo et al.. 2006).

Aglaothamnion cordatum (Børgesen) Feldmann-Mazoyer

Iran (Silva, Basson & Moe 1996).

Ahnfeltia plicata (Hudson) Fries

Iran (Silva, Basson & Moe 1996).

Amphiroa fragilissima (Linnaeus) J.V. Lamouroux

Iran (Sohrabipour & Rabii 1999).

Amphora coffeaeformis (C. Agardh) Kützing

Iran (Jamaloo et al.. 2006).

Amphora ovalis (Kützing) Kützing

Iran (Jamaloo et al.. 2006).

Amphora perpusilla (Grunow) Grunow

Iran (Jamaloo et al.. 2006).

Anotrichium tenue (C. Agardh) Nägeli

Iran (Silva, Basson & Moe 1996, Sohrabipour & Rabii 1999).

Antithamnion cruciatum var. radicans (J. Agardh) F.S. Collins

Iran (Silva, Basson & Moe 1996).

Apoglossum spathulatum (Sonder) Womersley & Shepley

Iran (Silva, Basson & Moe 1996).

Asparagopsis taxiformis (Delile) Trevisan de Saint-Léon

Iran (Silva, Basson & Moe 1996).

با کلیک بر روی گزینه ها می توانید به سایت اصلی لینک شوید.

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ٢:۱٩ ‎ب.ظ روز چهارشنبه ۱٤ فروردین ۱۳۸٧

معرفی جنس Asterococcus

جنس  Asterococcus

Asterococcus

General appearance of alga? Non-motile microalgae (single cells); or Soft or firm colony (many cells or filaments). Colour: green. Habitat: freshwater. Aquatic type: lake; or pond. Free-living or attached: free-living. Motile: Not motile. Is mucilage or gelatinous material present: Mucilage present in obvious concentric rings around each cell or group of cells in the colony.; or Mucilage present but not stratified. Filament: Branching type not recorded. Filaments in bundles: not recorded. Filament: Cell arrangement not recorded. Filament: Filament diameter not recorded. Cell: Individual cell shape globose or spherical. Cell: Is there a median constriction (isthmus)? Absent. Cell: Do the cells bear spines or cellular extensions? Absent. Cell: How many flagella per cell? Absent. Cell: Is a red eyespot conspicuous? no. Cell: Heterocytes absent. Cell: Akinetes absent. Cell: Cell length 10–35 µm. Cell: Cell diameter 10–35 µm. Cell: How many pyrenoids per plastid? 1. Cell: How many plastids? 1. Cell: Plastid shape? star-shaped; or lobed. Cell: Position of plastid in cell? Axial; or Parietal. Colony: Are remnants of the mother cell wall present or is the entire mother cell wall persistent? Mother cell wall absent. Colony: cell arrangement Cells in groups of 2; or Cells in groups of 2-4; or Cells in groups greater than 4 cells. Colony: Shape of colony? Globose to spherical. Colony: Are cells or groups of cells connected by mucilaginous threads? No. Colony: Cells in one layer or throughout throughout colony. Capable of forming blooms? Not observed. Classification: Division Chlorophyta (Green Algae). Classification: Class Chlorophyceae. Classification: Family Gloeocystaceae.

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٢:٥۸ ‎ب.ظ روز دوشنبه ٥ فروردین ۱۳۸٧

چک لیست گونه های جلبکی ایران

با سلام

آغاز سال نو پیشاپیش مبارک

در همکاری جدیدی با سایت www.Algaebase.org  در نظر داریم تا تمامی گونه های رکورد شده از ایران را در بخش پراکنش و ثبت رکورد این سایت گردآوری نماییم. لذا از تمامی عزیزانی که دارای مقالات، کتب، مقالات کامل در کنفرانسهای داخلی و خارجی، طرح، پایان نامه و موارد مشابه در مورد گونه های جلبکی ایران می باشند، تقاضا می شود تا این اطلاعات را به صورت فایل  یا نسخه کپی در اختیار بنده قرار دهند تا در سایت به نام خودشان رکورد گردد. لازم به ذکر است که معنای رکورد در این سایت به مفهوم اولین ثبت نمونه در ایران نبوده و بلکه تمامی منابعی که دارای گزارشی از گونه های جلبکی ایران هستند را شامل می شود. به عبارتی می توان گونه ای خاص از ایران را در چندین منبع، رفرانس داد.

با تشکر

منتظر نظرات ارزشمند و همکاری شما عزیزان هستیم.   

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱۱:٤٢ ‎ق.ظ روز چهارشنبه ٢٢ اسفند ۱۳۸٦

رده بندی جلبکها/ بخش سوم

جهت مشاهده بخش سوم رده بندی جلبکها به ادامه مطلب مراجعه فرمایید.

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٢:۳۱ ‎ق.ظ روز شنبه ۱٠ آذر ۱۳۸٦

رده بندی جلبکها/ بخش دوم

لطفا برای مشاهده به ادامه مطلب مراجعه نمایید.

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٢:۳٠ ‎ق.ظ روز شنبه ۱٠ آذر ۱۳۸٦

رده بندی جلبکها/ بخش اول

لطفا به ادامه مطلب مراجعه فرمایید.

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٢:٢٦ ‎ق.ظ روز شنبه ۱٠ آذر ۱۳۸٦

معرفی جنس Arthrospira

Arthrospira

 

 

General appearance of alga? Unbranched filaments; or Blue-green algae - cells without organelles.

 

Colour? yellow.

 

Habitat freshwater; or terrestrial.

 

Aquatic type? lake; or pond; or bogs; or puddles and ditches.

 

Free-living or attached? free-living; or attached in sand or soil.

 

Motile? Not motile.

 

Is mucilage or gelatinous material present? Absent.

 

Filament: Branching type not recorded.

 

Filaments in bundles? not recorded.

 

Filament: Cell arrangement cells abutting.

 

Filament: Filament diameter not recorded.

 

Cell: Individual cell shape cylindrical.

 

Cell: Is there a median constriction (isthmus)? Absent.

 

Cell: Do the cells bear spines or cellular extensions? Absent.

 

Cell: How many flagella per cell? Absent.

 

Cell: Is a red eyespot conspicuous? no.

 

Cell: Heterocytes absent.

 

Cell: Akinetes absent.

 

Cell: Cell length 2–5 µm.

 

Cell: Cell diameter 2–8 µm.

 

Cell: How many pyrenoids per plastid? 0.

 

Cell: How many plastids? 0.

 

Cell: Plastid shape? not recorded.

 

Cell: Position of plastid in cell? not recorded.

 

Colony: Are remnants of the mother cell wall present or is the entire mother cell wall persistent? not recorded.

 

Colony: cell arrangement not recorded.

 

Colony: Shape of colony? not recorded.

 

Colony: Are cells or groups of cells connected by mucilaginous threads? No.

 

Colony: Cells in one layer or throughout not recorded.

 

Capable of forming blooms? Not observed.

 

 

Classification: Division Cyanobacteria (Blue-green algae).

 

Classification: Class Cyanophyceae.

 

Classification: Family Oscillatoriaceae.

 

 

Reference Dillard (1999:115), Day et al. (1995:209), Entwisle et al. (1999c).

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ٢:٠۳ ‎ق.ظ روز چهارشنبه ۱٥ فروردین ۱۳۸٦

معرفی جنس Arthrodesmus

Arthrodesmus

 

 

General appearance of alga? Non-motile microalgae (single cells).

 

Colour? green.

 

Habitat freshwater.

 

Aquatic type? lake; or pond; or bogs; or puddles and ditches.

 

Free-living or attached? free-living.

 

Motile? not recorded.

 

Is mucilage or gelatinous material present? Absent.

 

Filament: Branching type not recorded.

 

Filaments in bundles? not recorded.

 

Filament: Cell arrangement not recorded.

 

Filament: Filament diameter not recorded.

 

Cell: Individual cell shape other.

 

Cell: Is there a median constriction (isthmus)? not recorded.

 

Cell: Do the cells bear spines or cellular extensions? Present.

 

Cell: How many flagella per cell? Absent.

 

Cell: Is a red eyespot conspicuous? no.

 

Cell: Heterocytes absent.

 

Cell: Akinetes absent.

 

Cell: Cell length not recorded.

 

Cell: Cell diameter not recorded.

 

Cell: How many pyrenoids per plastid? not recorded.

 

Cell: How many plastids? not recorded.

 

Cell: Plastid shape? not recorded.

 

Cell: Position of plastid in cell? not recorded.

 

Colony: Are remnants of the mother cell wall present or is the entire mother cell wall persistent? not recorded.

 

Colony: cell arrangement not recorded.

 

Colony: Shape of colony? not recorded.

 

Colony: Are cells or groups of cells connected by mucilaginous threads? No.

 

Colony: Cells in one layer or throughout not recorded.

 

Capable of forming blooms? not recorded.

 

 

Classification: Division Chlorophyta (Green Algae).

 

Classification: Class Zygnematophyceae.

 

Classification: Family Desmidaceae.

 

 

Reference Bourelly (1966:432), Dillard (1999:41), Whitford et al. (1973:75), Day et al.

(1995:77), Entwisle et al. (1999c).

 

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱:٥٩ ‎ق.ظ روز چهارشنبه ۱٥ فروردین ۱۳۸٦

ALGAE RECORDED FROM IRAN

ALGAE RECORDED FROM IRAN

(Acanthophora nayadiformis
Acanthophora spicifera
Aglaothamnion cordatum
Ahnfeltia plicata
Anotrichium tenue
Antithamnion cruciatum var. radicans
Apoglossum spathulatum
Asparagopsis taxiformis
Asteromenia peltata
Blennothrix lyngbyacea
Bryopsis hypnoides
Bryopsis implexa
Caulerpa manorensis
Caulerpa mexicana
Caulerpa sertularioides
Centroceras clavulatum
Ceramium cimbricum
Ceramium cruciatum
Ceramium flaccidum
Ceramium luetzelburgii
Ceramium maryae
Chaetomorpha aerea
Chaetomorpha linum
Champia kotschyana
Champia parvula
Chondria dasyphylla
Chondria seticulosa
Chroodactylon ornatum
Cladophora coelothrix
Cladophora echinus
Cladophora nitellopsis
Cladophora sericioides
Cladophoropsis javanica
Colpomenia sinuosa
Cystoseira myrica
Cystoseira trinodis
Dasya ocellata
Dictyopteris australis forma karachiensis
Dictyota cervicornis
Dictyota divaricata
Digenea simplex
Enteromorpha clathrata
Enteromorpha compressa
Entocladia viridis
Entophysalis deusta
Erythrocladia irregularis
Erythrotrichia carnea
Galaxaura rugosa
Gelidiella acerosa
Gelidium crinale
Gelidium pusillum var. pulvinatum
Gracilaria corticata
Gracilaria foliifera
Gracilaria salicornia
Grateloupia comorinii
Griffithsia globulifera
Herposiphonia secunda forma tenella
Heterosiphonia crispella
Heterosiphonia crispella var. laxa
Hincksia mitchelliae
Hydrolithon farinosum
Hyella caespitosa
Hypnea musciformis
Hypnea pannosa
Hypnea valentiae
Iyengaria stellata
Jania pumila
Jania rubens
Laurencia glandulifera
Laurencia majuscula
Laurencia papillosa
Leveillea jungermannioides
Lobophora variegata
Lomentaria corallicola
Lophocladia lallemandii
Lophosiphonia obscura
Lyngbya majuscula
Myriogramme okhaensis
Padina boryana
Padina tetrastromatica
Phaeophila dendroides
Phormidium corallinae
Phormidium nigroviride
Pneophyllum fragile
Polysiphonia brodiei
Polysiphonia crassicollis
Polysiphonia denudata
Polysiphonia ferulacea
Polysiphonia kampsaxii
Porphyrosiphon notarisii
Rhizoclonium tortuosum
Sahlingia subintegra
Sarconema filiforme
Sargassum acinaciforme
Sargassum angustifolium
Sargassum aquifolium
Sargassum boveanum
Sargassum boveanum var. aterrimum
Sargassum crassifolium
Sargassum herbaceum
Sargassum persicum
Sargassum swartzii
Sargassum tenuissimum
Sargassum virgatum
Sargassum vulgare var. angustifolium
Sargassum vulgare var. latifolium
Siphonocladus feldmannii
Sphacelaria rigidula
Spyridia filamentosa
Stilophora iranica
Tolypiocladia glomerulata
Ulva lactuca
Valonia utricularis forma crustacea

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ٢:٥٢ ‎ب.ظ روز جمعه ۱۱ اسفند ۱۳۸٥

معرفی جنس Aphanothece

Aphanothece

 

General appearance of alga? Soft or firm colony (many cells or filaments); or Blue-green algae - cells without organelles.

 

Colour? green; or blue; or olive.

 

Habitat freshwater; or saline; or terrestrial.

 

Aquatic type? lake; or pond; or bogs; or puddles and ditches.

 

Free-living or attached? attached to rocks; or attached in sand or soil.

 

Motile? Not motile.

 

Is mucilage or gelatinous material present? Mucilage present in obvious concentric rings around each cell or group of cells in the colony.; or Mucilage present but not stratified.

 

Filament: Branching type not recorded.

 

Filaments in bundles? not recorded.

 

Filament: Cell arrangement not recorded.

 

Filament: Filament diameter not recorded.

 

Cell: Individual cell shape globose or spherical; or cylindrical; or ovoid.

 

Cell: Is there a median constriction (isthmus)? Absent.

 

Cell: Do the cells bear spines or cellular extensions? Absent.

 

Cell: How many flagella per cell? Absent.

 

Cell: Is a red eyespot conspicuous? no.

 

Cell: Heterocytes absent.

 

Cell: Akinetes absent.

 

Cell: Cell length 1.5–8 µm.

 

Cell: Cell diameter 1–4 µm.

 

Cell: How many pyrenoids per plastid? 0.

 

Cell: How many plastids? 0.

 

Cell: Plastid shape? not recorded.

 

Cell: Position of plastid in cell? not recorded.

 

Colony: Are remnants of the mother cell wall present or is the entire mother cell wall persistent? Mother cell wall absent.

 

Colony: cell arrangement Irregularly arranged (no uniform number of cells); or Cells in groups of 2.

 

Colony: Shape of colony? Irregular or amorphous (no clear shape).

 

Colony: Are cells or groups of cells connected by mucilaginous threads? No.

 

Colony: Cells in one layer or throughout throughout colony.

 

Capable of forming blooms? Not observed.

 

 

Classification: Division Cyanobacteria (Blue-green algae).

 

Classification: Class Cyanophyceae.

 

Classification: Family Microcystaceae.

 

Reference Skinner et al. (2001a:576), McGregor et al. (2001:18), Komarek et al. (1999:71), Baker (1992:21), Bourelly (1970:315), Smith (1950:560), Dillard (1999:84), Ling et al. (

2000:12), Day et al. (1995:201), Entwisle et al. (1999c).

 

 

 

 

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٢:٤٩ ‎ق.ظ روز چهارشنبه ٩ اسفند ۱۳۸٥

معرفی جنس Aphanochaete

Aphanochaete

 

 

 

General appearance of alga? Simple branched algae one cell thick.

 

Colour? green.

 

Habitat freshwater.

 

Aquatic type? lake; or pond; or river or stream; or bogs; or puddles and ditches.

 

Free-living or attached? attached to plants or algae.

 

Motile? Not motile.

 

Is mucilage or gelatinous material present? Absent.

 

Filament: Branching type true branching.

 

Filaments in bundles? not recorded.

 

Filament: Cell arrangement cells abutting.

 

Filament: Filament diameter not recorded.

 

Cell: Individual cell shape cylindrical.

 

Cell: Is there a median constriction (isthmus)? Absent.

 

Cell: Do the cells bear spines or cellular extensions? Present.

 

Cell: How many flagella per cell? Absent.

 

Cell: Is a red eyespot conspicuous? no.

 

Cell: Heterocytes absent.

 

Cell: Akinetes absent.

 

Cell: Cell length 6–20 µm.

 

Cell: Cell diameter 5–10 µm.

 

Cell: How many pyrenoids per plastid? 1–10.

 

Cell: How many plastids? 1.

 

Cell: Plastid shape? sheet or longitudinal plate.

 

Cell: Position of plastid in cell? Parietal.

 

Colony: Are remnants of the mother cell wall present or is the entire mother cell wall persistent? not recorded.

 

Colony: cell arrangement not recorded.

 

Colony: Shape of colony? not recorded.

 

Colony: Are cells or groups of cells connected by mucilaginous threads? No.

 

Colony: Cells in one layer or throughout not recorded.

 

Capable of forming blooms? Not observed.

 

 

Classification: Division Chlorophyta (Green Algae).

 

Classification: Class Chlorophyceae.

 

Classification: Family Chaetophoraceae.

 

 

 

Reference Smith (1950:163), Prescott (1951:125), Dillard (1999:135), Ling et al. (2000:126), Day et al. (1995:50), Entwisle et al. (1999c).

 

 

 

 

 

 

 

 

 

 

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱۱:۱۳ ‎ب.ظ روز چهارشنبه ٢ اسفند ۱۳۸٥

Agmenellum

Agmenellum

 

 

General appearance of alga? Soft or firm colony (many cells or filaments); or Blue-green algae - cells without organelles.

 

Colour? green; or blue; or colourless.

 

Habitat freshwater.

 

Aquatic type? not recorded.

 

Free-living or attached? free-living.

 

Motile? Not motile.

 

Is mucilage or gelatinous material present? Mucilage present in obvious concentric rings around each cell or group of cells in the colony.; or Mucilage present but not stratified.

 

Filament: Branching type not recorded.

 

Filaments in bundles? not recorded.

 

Filament: Cell arrangement not recorded.

 

Filament: Filament diameter not recorded.

 

Cell: Individual cell shape globose or spherical; or ovoid.

 

Cell: Is there a median constriction (isthmus)? Absent.

 

Cell: Do the cells bear spines or cellular extensions? Absent.

 

Cell: How many flagella per cell? Absent.

 

Cell: Is a red eyespot conspicuous? no.

 

Cell: Heterocytes absent.

 

Cell: Akinetes absent.

 

Cell: Cell length not recorded.

 

Cell: Cell diameter not recorded.

 

Cell: How many pyrenoids per plastid? 0.

 

Cell: How many plastids? 0.

 

Cell: Plastid shape? not recorded.

 

Cell: Position of plastid in cell? not recorded.

 

Colony: Are remnants of the mother cell wall present or is the entire mother cell wall persistent? Mother cell wall absent.

 

Colony: cell arrangement Cells in groups greater than 4 cells.

 

Colony: Shape of colony? Rectangular.

 

Colony: Are cells or groups of cells connected by mucilaginous threads? No.

 

Colony: Cells in one layer or throughout on periphery or surface layer of colony.

 

Capable of forming blooms? Not observed.

 

 

Classification: Division Cyanobacteria (Blue-green algae).

 

Classification: Class Cyanophyceae.

 

Classification: Family Microcystaceae.

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱:٤٦ ‎ق.ظ روز دوشنبه ۱٦ بهمن ۱۳۸٥

Actinotaenium

Actinotaenium

 

General appearance of alga? Non-motile microalgae (single cells).

 

Colour? green.

 

Habitat freshwater; or terrestrial.

 

Aquatic type? lake; or pond; or bogs; or puddles and ditches.

 

Free-living or attached? free-living.

 

Motile? not recorded.

 

Is mucilage or gelatinous material present? Absent.

 

Filament: Branching type not recorded.

 

Filaments in bundles? not recorded.

 

Filament: Cell arrangement not recorded.

 

Filament: Filament diameter not recorded.

 

Cell: Individual cell shape globose or spherical; or ellipsoid; or ovoid.

 

Cell: Is there a median constriction (isthmus)? Shallow furrow.

 

Cell: Do the cells bear spines or cellular extensions? Absent.

 

Cell: How many flagella per cell? Absent.

 

Cell: Is a red eyespot conspicuous? no.

 

Cell: Heterocytes absent.

 

Cell: Akinetes absent.

 

Cell: Cell length 20–260 µm.

 

Cell: Cell diameter 7–110 µm.

 

Cell: How many pyrenoids per plastid? 2–10.

 

Cell: How many plastids? 1.

 

Cell: Plastid shape? star-shaped.

 

Cell: Position of plastid in cell? Axial; or Parietal.

 

Colony: Are remnants of the mother cell wall present or is the entire mother cell wall persistent? Mother cell wall absent.

 

Colony: cell arrangement not recorded.

 

Colony: Shape of colony? not recorded.

 

Colony: Are cells or groups of cells connected by mucilaginous threads? No.

 

Colony: Cells in one layer or throughout not recorded.

 

Capable of forming blooms? Not observed.

 

Classification: Division Chlorophyta (Green Algae).

 

Classification: Class Zygnematophyceae.

 

Classification: Family Desmidaceae.

 

 

 

 

 

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ۱٢:۳٥ ‎ق.ظ روز دوشنبه ٢ بهمن ۱۳۸٥

Common Freshwater Algal Genera

Common Freshwater Algal Genera

A

Amphipleura

Amphora

Anabaena

Ankistrodesmus

Aphanizomenon

Aphanocapsa

Aphanothece

Apiocystis

Asterionella

Attheya


B

Bambusina

Batrachospermum

Botryochloris

Botryococcus

Bulbochaete


C

Caloneis

Calothrix

Campylodiscus

Carteria

Ceratium

Chaetophora

Chaetosphaeridium

Chara

Characiopsis

Characium

Chlamydomonas

Chlorella

Chroococcus

Chrysamoeba

Chrysosphaerella

Cladophora

Closterium

Cocconeis

Coelastrum

Coelosphaerium

Colacium

Coleochaete

Cosmarium

Cosmocladium

Crucigenia

Cryptomonas

Cyclotella

Cymatopleura

Cymbella


D

Desmidium

Diatoma

Dictyosphaerium

Dimorphococcus

Dinobryon

Diploneis

Docidium


E

Encyonema

Entomoneis

Epithemia

Eremosphaera

Euastrum

Eucapsis

Eudorina

Euglena

Eunotia


F

Fragilaria

Frustulia


G

Glaucocystis

Gloeocapsa

Gloeocystis

Gloeotrichia

Golenkinia

Gomphonema

Gomphosphaeria

Gonyostomum

Gymnodinium

Gyrosigma


H

Hapalosiphon

Hormidium

Hyalotheca


K

Kirchneriella


L

Lyngbya


M

Mallomonas

Melosira

Meridion

Merismopedia

Micractinium

Micrasterias

Microcystis

Microspora

Microthamnion

Mougeotia


N

Navicula

Nephrocytium

Netrium

Nitella

Nitzschia

Nostoc


O

Octacanthium

Oedogonium

Oocystis

Oscillatoria


P

Palmodictyon

Pandorina

Pediastrum

Peridinium

Peridiniopsis

Peroniella

Phacus

Pinnularia

Pleurotaenium


Q

Quadrigula

 


R

Radiofilum

Rhizochrysis

Rhopalodia


S

Scenedesmus

Scytonema

Selenastrum

Sorastrum

Sphaerocystis

Spirogyra

Spondylosium

Staurastrum

Stauroneis

Stephanodiscus

Stigeoclonium

Stipitococcus

Surirella

Synechococcus

Synedra

Synura


T

Tabellaria

Tetradesmus

Tetraedron

Tetraspora

Tolypothrix

Trachelomonas


U

Ulothrix

Uroglena

Uroglenopsis

Urosolenia


V

Vaucheria

Vitreochlamys

Volvox


W

Woronichinia


X

Xanthidium


Z

Zygnema

Zygnemopsis

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ٢:٢٠ ‎ق.ظ روز پنجشنبه ٢۸ دی ۱۳۸٥

Actinastrum

Actinastrum

 

General appearance of alga? Non-motile microalgae (single cells); or Soft or firm colony (many cells or filaments).

 

Colour? green.

 

Habitat freshwater.

 

Aquatic type? lake; or pond.

 

Free-living or attached? free-living.

 

Motile? Not motile.

 

Is mucilage or gelatinous material present? Absent.

 

Filament: Branching type not recorded.

 

Filaments in bundles? not recorded.

 

Filament: Cell arrangement cells abutting.

 

Filament: Filament diameter not recorded.

 

Cell: Individual cell shape spindle-shaped.

 

Cell: Is there a median constriction (isthmus)? Absent.

 

Cell: Do the cells bear spines or cellular extensions? Absent.

 

Cell: How many flagella per cell? Absent.

 

Cell: Is a red eyespot conspicuous? no.

 

Cell: Heterocytes absent.

 

Cell: Akinetes absent.

 

Cell: Cell length 15–24 µm.

 

Cell: Cell diameter 2–3 µm.

 

Cell: How many pyrenoids per plastid? 1.

 

Cell: How many plastids? 1.

 

Cell: Plastid shape? discoid or plate-like.

 

Cell: Position of plastid in cell? Parietal.

 

Colony: Are remnants of the mother cell wall present or is the entire mother cell wall persistent? Mother cell wall absent.

 

Colony: cell arrangement Cells in groups of 2-4.

 

Colony: Shape of colony? not recorded.

 

Colony: Are cells or groups of cells connected by mucilaginous threads? No.

 

Colony: Cells in one layer or throughout throughout colony.

 

Capable of forming blooms? Not observed.

 

Classification: Division Chlorophyta (Green Algae).

 

Classification: Class Chlorophyceae.

 

Classification: Family Scenedesmaceae.

 

 

 

 

 

  
نویسنده : رضا رمضان نژاد قادی ; ساعت ٦:۳٥ ‎ب.ظ روز چهارشنبه ٢٧ دی ۱۳۸٥

دورانها و دوراه های زمین شناسی

(mya = million years ago) 

Phanerozoic Eon
(543 mya to present)

Cenozoic Era
(65 mya to today)

Quaternary (1.8 mya to today)
       Holocene (10,000 years to today)
       
Pleistocene (1.8 mya to 10,000 yrs)
Tertiary (65 to 1.8 mya)
       Pliocene (5.3 to 1.8 mya)
       
Miocene (23.8 to 5.3 mya)
       
Oligocene (33.7 to 23.8 mya)
       
Eocene (54.8 to 33.7 mya)
       
Paleocene (65 to 54.8 mya)

Mesozoic Era
(248 to 65 mya)

Cretaceous (144 to 65 mya)
Jurassic (206 to 144 mya)
Triassic (248 to 206 mya)

Paleozoic Era
(543 to 248 mya)

Permian (290 to 248 mya)
Carboniferous (354 to 290 mya)
       Pennsylvanian (323 to 290 mya)
       Mississippian (354 to 323 mya)

Devonian (417 to 354 mya)
Silurian (443 to 417 mya)
Ordovician (490 to 443 mya)
Cambrian (543 to 490 mya)
        Tommotian (530 to 527 mya)

Precambrian Time
(4,500 to 543 mya)

Proterozoic Era
(2500 to 543 mya)

Neoproterozoic (900 to 543 mya)
       Vendian (650 to 543 mya)
Mesoproterozoic (1600 to 900 mya)
Paleoproterozoic (2500 to 1600 mya)

Archaean
(3800 to 2500 mya)

Hadean
(4500 to 3800 mya)


  
نویسنده : رضا رمضان نژاد قادی ; ساعت ٦:۱۱ ‎ب.ظ روز چهارشنبه ٢٧ دی ۱۳۸٥