Phycology جلبک شناسی

نخستین پایگاه اطلاعاتی جلبک شناسی به زبان فارسی

شرح جنس جلبکهای آب شیرین

با سلام

شرح جنس جلبکهای آب شیرین بالغ بر 300 جنس برگرفته از سایت جلبکهای آب شیرین استرالیا که با برخی تغییرات در نرم افزار word قرار گرفته ارائه میگردد. امید است که مورد استفاده علاقمندان قرار گیرد.

لطفا به ادامه مطلب مراجعه نمایید.

  
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ۱:٥٧ ‎ب.ظ روز چهارشنبه ٢۸ امرداد ۱۳۸۸

شاخه پروکلروفیتا

این شاخه دارای یک رده پروکلروفیسه و یک راسته پروکلروالز است وتنها سه جنس دارد. جلبکهای این جنس دارای سلولهای به شکل نیم کره تا تخم مرغی هستند. این گروه دارای  کلروفیل a و کلروفیل b به همراه کاروتنوئیدهای یافت شده در گیاهان مانند بتا کاروتن، زئاگزانتین و کریپتوگزانتین بوده و ساختار تیلاکوئید در آنها دارای سازمان دوتایی یا توده های چند تایی است. لذا گمان می‏رود که این گروه دارای جد مشترک یا پلاستیدهای گیاهان و جلبکهای یوکاریوتی باشند (پیرسون 1995). این گیاهان فاقد فیکوبیلین ها میباشند. جنس حدواسط سیانوفیتا و کلروفیتا، پروکلرون نام دارد که به دلیل پروکاریوت بودن در گروه سیانوفیتا جای گرفته است.

منتظر مطالب بیشتر در کتاب آتی تالوفیتا نوشته اینجانب و همکاران باشید.

  
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ٢:۳٤ ‎ق.ظ روز چهارشنبه ٢۸ امرداد ۱۳۸۸

رده بندی جلبکها لی 2008

رده بندی جلبکها لی 2008

لطفا به ادامه مطلب مراجعه نمایید.

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ٢:۳٠ ‎ق.ظ روز چهارشنبه ٢۸ امرداد ۱۳۸۸

کلید شناسایی هتروکونتوفیتا Provisional key to Heterokontophyta

by C.S. Lobban & A.D.R. N'Yeurt

 

1. Thallus colonial, consisting of separate individual cells in a common matrix or tube: 2
1. Thallus multicellular, the cells closely adherent to one another: 6

Colonial heterokonts (Sarcinochrysidales and Bacillariphyceae)

2. Colony filamentous: 3
2. Colony globular: 4

3. Filaments comprising corrugated tubes containing very long, needle-like diatom cells: Nitzschia
3. Filaments with cells packed into it, only evident when colonies are kept at ~20C for a day or more, when they round up and separate: Chrysonephos

4. Colonies extremely fragile, disintegrating if picked up: Chrysocystis
4. Colonies rubbery or mucilaginous but easily handled: 5

5. Colonies rubbery golden, spherical cells distributed throughout matrix: Sarcinochrysis
5. Colonies very mucilaginous, mostly colorless with a powdery mustard-yellow surface dust; elongate cells with distinctive apex, on long mucilaginous stalks:
Chrysophaeum

Multicellular (Phaeophyceae)

6. Thallus exclusively filamentous, generally in tufts or turfs: 7
6. Thallus not exclusively filamentous: 11

filamentous

7. Filaments multiseriate (more than one row of cells), parenchymatous; pyramidal or globose or Y-shaped vegetative propagules commonly present: Sphacelaria
7. Filaments uniseriate (one row of cells): 8

8. Filaments tangled into rope-like tufts, “flowerlike” plastids, appearing to have four lobes with a central pyrenoid: Asteronema
8. Filaments not tangled and ropey; appearance fuzzy or silky: 9

9. Plurilocular sporangia commonly present, thallus brown or tan: 10
9. Sporangia entirely absent, zoids formed by cells in tube rounding up (may be induced by cold shock; see
3 above), thallus yellow-brown: Chrysonephos

10. Meristematic zone (dividing cells) distinct, generally at base of long unbranched filament; sporangia mostly stalked: Feldmannia
10. Meristematic zones
intercalary, diffuse, rarely at base of short lateral branch; sporangia mostly sessile (not stalked): Hincksia

11. Thallus of parenchymatous plates partially adherent to substratum or erect flat, terete or globose fronds: 12
11. Thallus crustose, pseudoparenchyma of filaments forming basal layer and erect carpet-like layer: 13

12. Thallus flat fan-shaped to strap-like blades: 14
12. Fronds terete (may be compressed/oval), globular or irregular:
20

crustose, uncalcified

13. Relatively thick crust, difficult to remove, basal layer 1-2 cells, erect filaments tightly adherent: Ralfsia
13. Thin crust easily removed, base 3-4 cells, erect filaments separating easily: Hapalospongidion

flat, erect/prostrate

14. Thallus calcified, erect broad to elongate fans with inrolled margins: Padina
14. Thallus not calcified, margins not inrolled: 15

15. Thallus fan-shaped or tapering markedly from apex to base; apical meristem diffused along the leading edge of the blade: 16
15. Thallus straplike, branches not tapering markedly; apical meristem a single cell or small cluster of cells: 18

16. Medullary cells uniformly rectangular, in stacked tiers: 17
16. Medullary cells not uniformly regular or stacked: Stypopodium

17. Cross section with a central medullary layer of cells bigger than other medullary and cortical cells; thick largely creeping plants often with ventral surface well anchored to substratum: Lobophora
     [Distromium looks like Lobophora but is 2 cells thick; not yet reported]
17. Cross section showing medulla of equal layers: Zonaria

18. Blades with distinct midrib: Dictyopteris
18. Blades without distinct midrib: 19

19. Growth from one apical cell per branch; medulla, at least near the apices, generally a single layer surrounded by a single layer of markedly smaller cortical cells: Dictyota
       (D. cervicornis recently transferred to Canistrocarpus)
19. Growth from multiple apical cells per branch; blades several cells thick without marked distinction between cortex and medulla: Spatoglossum


terete/globose

20. Thallus irregularly-shaped mass without distinct axes: 21
20. Thallus with one or many axes, having some consistent pattern to the branches or blades: 22

21. Thallus sac-like, often lobed, hollow when mature; margins not inrolled: Colpomenia
21. Thallus initially hollow, soon becoming flattened with many holes; margins inrolled: Hydroclathrus

22. Thallus floats when detached from substratum, possessing some type of air bladder; reproductive organs within sunken conceptacles: 23
22. Thallus sinks when detached from substratum, without air-bladders; reproductive organs on surface, not sunken in conceptacles; without leaflike or pyramidal branches: 25

23. Main axes terete, with leaf-like, terete, or pyramidal branches: 24
23. Main axes divided into leaf-like sections, each generally with a vesicle at the center: Hormophysa

24. Blades leaf-like; air bladders bulbous and obvious: Sargassum
24. Blades pyramid-shaped; air-bladders sunken within blades: Turbinaria

25. Tough, erect or matted thalli: 26
25. Thallus lax, irregularly branched; branches hollow, occasionally collapsed and somewhat flattened: Rosenvingea

26. Erect thalli with cryptostomata: Chnoospora
26. Creeping mat of narrow terete or compressed axes, cryptostomata absent: Padina (Vaughaniella stage)

top

Revised April 2006

  
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ٤:٢۱ ‎ب.ظ روز سه‌شنبه ٢٧ امرداد ۱۳۸۸

Key to Cyanophyta

Key to Cyanophyta

 

by C.S. Lobban & A.D.R. N'Yeurt

لطفا به ادامه مطلب مراجعه فرمایید.

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ٤:۱۱ ‎ب.ظ روز سه‌شنبه ٢٧ امرداد ۱۳۸۸

Identification of Blue Green Algae

  
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ٤:٠٥ ‎ب.ظ روز سه‌شنبه ٢٧ امرداد ۱۳۸۸

Medicinal Uses Of Algae

Important warning: please note that all medicines, including herbal medicines, should be taken only on the advice of a qualified practioner. Many beneficial treatements do not work in particular circumstances and may be antagonistic. For all medicines a particular dose and course of treatment must be observed; it should be noted that more of a good treatment is not necessarily better. You should not treat yourself on the basis of any information given here.

In Europe and North America, many claims have been made for the effectiveness of seaweeds on human health. It has been suggested, amongst other things, that seaweeds have curative powers for tuberculosis, arthritis, colds and influenza, worm infestations, and may even improve one's attractiveness to the opposite sex. Digenea (Ceramiales; Rhodophycota) produces an effective vermifugal agent (kainic acid). Recently, aqueous extracts from two red algae belonging to the family Dumontiaceae have been found to inhibit the herpes simplex virus but no tests have been carried out on humans. Carrageenans have been patented as anti-viral agents. Many of the reported medicinal effects of marine algae have not been substantiated. Corallina is being used used in bone-replacement therapy. Stein & Borden (1984) provide a more extensive review.

Some kelps may have polysaccharides that apparently reduce the incidence of breast cancer.

Four seaweeds are commonly used in Chinese medicine:

  • The kelps Saccharina japonica and Ecklonia kurome as sources of kunbu (Saccharina (formerly Laminaria is sometimes called haidai, to distinguish it from Ecklonia and other sources)
  • Sargassum, a brown algae, as the source of haizao; Sargassum is a large genus and several species seem to be in use.
  • Porphyra, a red algae, as the source of zicai

Saccharina and Sargassum have been used in China for the treatment of cancer. Inhibition of cancerous tumours in animals seems to be caused by long-chained polysaccharides. Dry Saccharina stipes have long been used in obstetrics to dilate the cervix and were known as "Laminaria tents" (Stein & Borden, 1984); the dry stipe slowly takes up water and expands; such stipes are also used in China for the insertion of intrauterine devices.

According to Chinese medicine, seaweeds have a salty taste that is an indication that the material can disperse phlegm accumulation, particularly as it forms soft masses, include goitre, the thyroid swelling that indicates severe iodine deficiency. The following are descriptions of seaweeds from Oriental Materia Medica:

  • Kunbu (Saccharina and Ecklonia) (Kombu in Japan)
    • Essence and Flavor: Salty, Cold
    • Channel Entered: Liver, Stomach, Kidney
    • Actions: Softens hardness, disperses accumulation, resolves phlegm, cleanses heat
    • Applications: Scrofula, goiter, tumor, edema, accumulation, testicular pain and swelling
  • Haizao (Sargassum) (Hiziki in Japan; generally Sargassum fusiforme, but other sargassi are used in China)
    • Essence and Flavor: Bitter, Salty, Cold
    • Channel Entered: Liver, Stomach, Kidney
    • Actions: Disperses accumulated phlegm, disperses goiter and tumor, delivers water, cleanses heat
    • Applications: Scrofula, goitre, tumor, edema, testicular pain and swelling
  • Zicai (Porphyra) (Nori in Japan)
    • Essence and Flavor: Sweet, Salty, Cold
    • Channel Entered: Lung
    • Actions: Resolves phlegm, softens hardness, dispels heat, promotes diuresis
    • Applications: Goiter, beriberi (leg swelling), edema, urinary infection, sore throat

The descriptions for kunbu and haizao are quite similar. Yang Yifan wrote about the differences between these commonly used seaweeds: Haizao and Kunbu are salty and cold, and enter the liver, lung, and kidney meridians. Both can clear heat, transform phlegm, soften hardness, and dissipate nodules. They can also promote urination and reduce edema. In clinical practice, they are often used together to treat nodules such as goiter and scrofula. There are some differences between the two seaweeds. Haizao is stronger in transforming phlegm and dissipating nodules, and it is more suitable for treating goiter and scrofula. Kunbu is stronger in softening hardness and reducing congealed blood; it is more suitable for treating liver-spleen enlargement, liver cirrhosis, and tumors. One of the best known formulas with the seaweeds is Haizao Yuhu Tang, or the Sargassum Decoction for the Jade Flask. This formula of 12 ingredients includes Sargassum, Ecklonia, and Saccharina. It was used to treat a condition of goitre which was so severe it made the throat look like a large flask. However, these seaweeds have been adopted into formulas for treating other soft swellings, including ovarian cysts, breast lumps, lymph node swellings, lipomas, and fat accumulation from simple obesity (modified from http://www.itmonline.org/arts/seaweed.htm).

  
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ۱٢:٥٩ ‎ق.ظ روز سه‌شنبه ٢٧ امرداد ۱۳۸۸

Red Tides and Toxins

Red tides are very much in the news these days. Dinoflagellates are usually regarded as the causative organisms, but not all red tides are caused by dinoflagellates and not all dinoflagellates cause red tides. Furthermore, not all red-tide forming algae are toxic. Even the colour factor is variable: so-called 'red tides' may be brown, yellow, green, etc. Some red tides may be very extensive and several square kilometers of ocean may be affected, even to the extent that satellites have been used to track blooms.

Surface waters of these blooms usually have 1-20 million cells per litre and some are associated with the production of toxins, resulting in fish kills and mortality of other marine organisms.

Toxic blooms of dinoflagellates fall into three categories: (1) blooms that kill fish but few invertebrates; (2) blooms that kill primarily invertebrates; (3) blooms that kill few marine organisms, but the toxins are concentrated within the siphons, digestive glands, or mantle cavities of filter-feeding bivalve mollusc such as clams, oysters, and escallops, causing paralytic shellfish poisoning (known as PSP). The most notorious PSP-causing dinoflagellate on the Pacific coast of north America is Gonyaulax catenella, which produces a neurotoxin called saxitoxin that is 100,000 times more potent than cocaine.

Saxitoxin acts to prevent normal transmission across neuromuscular synapses by interfering with the movement of sodium ions through excitable membranes. Mussels may become too toxic for human consumption when concentrations of Gonyaulax catenella reach only 100-200 cells per millilitre, but concentrations of 23-30,000 cells per litre must be reached before a bloom is apparent to the unaided eye. Normally, the toxicity in the mussels disappears within 2-3 weeks after a bloom, but much longer retention times have been found.

What causes such blooms? A range of factors seem to be involved, but very little definite information is available. In some places there seems to be a strong correlation between the occurrence of upwelling (nutrient-rich waters that comes from deep water) and such blooms. But, in other areas, the blooms have been found to be associated with tidal turbulence. Blooms in other areas seem to be set off by heavy rainfall on the land, the runoff washing phosphates into the sea and also lowering the salinity, which factors seem to favour dinoflagellate growth. It is also thought that Vitamin B12, which is required by most dinoflagellates, may also be washed into the sea from the soil and salt-marsh areas, where it is produced by bacteria and blue-green algae. Humic substances have also been suggested as possible causative agents.

Toxic dinoflagellate blooms are recognized to be initiated from benthic resting stages, the cysts occurring in sediments and serving as 'seed populations' when environmental factors cause their resuspension. Such a cycle of encystment is a regular occurrence for many estuarine and neritic species that cause blooms.

  
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ۱٢:٥٦ ‎ق.ظ روز سه‌شنبه ٢٧ امرداد ۱۳۸۸

CLASSIFICATION OF THE ALGAE

با سلام

یک مطلب بسیار عالی از رده بندی جلبکها:

Huisman & Saunders : Phylogeny and Classification: 1 PHYLOGENY AND CLASSIFICATION OF THE ALGAE

John M. Huisman1 & Gary W. Saunders2

 

لطفا به ادامه مطلب مراجعه فرمایید.

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ۱٢:٤۳ ‎ق.ظ روز سه‌شنبه ٢٧ امرداد ۱۳۸۸

یک سایت بسیار خوب در ارتباط با گیاهان آبزی

http://plants.ifas.ufl.edu/

حتما بازدید بفرمایید.

  
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ٩:٢٢ ‎ب.ظ روز دوشنبه ٢٦ امرداد ۱۳۸۸
تگ ها : معرفی ها

درسنامه گیاهان آبزی 1

با سلام

درسنامه گیاهان آبزی 1، بنا به خواسته برخی دانشجویان در وبلاگ قرار داده می شود. لطفا با ارائه نظرات سازنده خود بنده را در بهبود این اثر یاری فرمایید.

لطفا به ادامه مطلب مراجعه نمایید.

 

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ٩:۱٧ ‎ب.ظ روز دوشنبه ٢٦ امرداد ۱۳۸۸

درسنامه مبانی جلبک شناسی

با سلام

درسنامه مبانی جلبک شناسی که بطور خلاصه جهت استفاده دانشجویان و آمادگی برای کنکور کارشناسی ارشد تهیه شده و به همکاری یک از دانشجویان تایپ شده است به حضورتان معرفی میگردد. لازم به ذکر است که تایپ این مجموعه دارای اشکالاتی است که در صورت داشتن وقت آزاد اصلاح خواهند شد.

لطفا به ادامه مطلب مراجعه نمایید.

 

  
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ٩:۱۱ ‎ب.ظ روز دوشنبه ٢٦ امرداد ۱۳۸۸

CV اینجانب

با سلام

به دلیل پرسشهای مکرر دوستان در رابطه با زمینه های کاری و علاقمندی های اینجانب CV خود را بطور ضمیمه در این بخش قرار میدهم.

لطفا به ادامه مطلبب مراجعه نمایید. 

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ٩:٠٧ ‎ب.ظ روز دوشنبه ٢٦ امرداد ۱۳۸۸
تگ ها : معرفی ها

TAXONOMY/SPECIES PLANTS (COMPRISING FLOWERING PLANTS, ALGAE, FUNGI, LICHENS)

TAXONOMY/SPECIES

PLANTS (COMPRISING FLOWERING PLANTS, ALGAE, FUNGI, LICHENS)

 

 

compiled by J.J. Bolton

 

 

 

Introduction

The photosynthetic organisms in the sea are from a wide variety of groups. The group most familiar on land, the flowering plants, are important only in certain coastal fringe environments (particularly estuaries), whereas rocky seashores and the sea itself have photosynthetic organisms which come from a variety of different groups. In the past most of the latter have been lumped together as ‘algae'. The ‘green algae' (Chlorophyta) include the green seaweeds and a wide variety of smaller algae, and are true green plants, related to the flowering plants. Other algae comprise at least twelve ‘Divisions' (equivalent to zoological Phyla). The broad term ‘algae' has also traditionally included the ‘blue-green algae', which are true bacteria (the Cyanobacteria), and are important in many marine environments. The fungi, though not photosynthetic, have often in the past between treated as ‘plants', and of course this is even more confused by the lichens, which are a symbiosis of an alga and a fungus. Molecular phylogenetic studies are revealing that relationships between these organisms are much more complicated than first thought, and that there are many more groups of living things than just ‘plants' and ‘animals'. For example one Division, the Heterokontophyta, now comprises a remarkable diversity of organisms, including brown algae (e.g. Ecklonia) and diatoms as well as a group that was traditionally in the fungi (the Oomycetes). The organisms discussed below are thus grouped primarily ecologically, rather than phylogenetically.

 

لطفا به ادامه مطلب مراجعه نمایید 

 

ادامه مطلب   
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ٩:٠٢ ‎ب.ظ روز دوشنبه ٢٦ امرداد ۱۳۸۸

Phylogeny and groupin of Algae Patterson 1999

                              Algae

 

 

 

  A polyphyletic grouping of organisms with chloroplasts. In a phylogenetic sense obsolete because the group is both polyphyletic and paraphyletic. It is still in widespread use in some quarters. Now divided into…….

 

 

 

 1. Blue-green algae (bacteria),

Bacterium: organisms with DNA as a loop not included in a nucleus. Also called prokaryotes. Distinguished from eukaryotes which have DNA in a membrane bounded nucleus

Blue-green algae: the cyanobacteria - a type of prokaryote. Not included

 

 

 

 

   2. Cryptomonads,

Cryptomonads - group of flagellates including autotrophs, heterotrophs and autotrophs., not diverse, but abundant and common. Two genera known to be exclusively heterotrophic (Chilomonas and Goniomonas) are heterotrophic.

 

 

 

 

   3. Dinoflagellates (an alveolate group),

Alveolates: A group of protists all with flattened sacs, alveoli, under the cell surface; comprised of the ciliates, dinoflagellates, and the apicomplexa

 

 

 

4. Euglenids ( a group of euglenozoa)

Euglenids - group of autotrophs, heterotrophs and mixotrophs, if autotrophic with plastids with chlorophyll B; assigned to the Euglenozoa.

Euglenozoa: A grouping of flagellates including kinetoplastids, euglenids, diplonemids and Postgaardi.

 

 

 

 

 

5. Stramenopiles, various (also referred to as chromophytes, chrysophytes, heterokonts - including the diatoms and brown algae),

Stramenopiles, a grouping of organisms with tripartite hairs usually associated with the flagella, or derived from such organisms. Large group with an array of trophic strategies, but including the actinophryids, bicosoecids Blastocystis, Chlamydomyxa, chromulinids, chrysophytes sensu lato, Commation, Developayella, diatoms, dictyochales, Diplophrys, hyphochytridiomycetes, labyrinthulids, oomycetes, opalines, Parmales, pedinellids, Pendulomonas, phaeothamniids, brown algae, Pirsonia, proteromonads, raphidiophytes, Reticulosphaera, Rhizochromulina, Siluania, synurids, pelagophytes, thrausochytrids, and the xanthophytes.

Chromophytes: a term used variously to refer to some or all of those algae with chloroplasts having chlorophylls a and c (i.e. stramenopiles, cryptomonads, haptophytes and dinoflagellates)

 

 

 

 

6. Haptophytes (= prasinophytes),

Haptophytes: also called prymnesiophytes, mostly small marine algae with two flagella and an additional locomotor organelle, the haptonema. Includes the coccolithophorids - being those species with calcareous scales. a few taxa are heterotrophic.

Prasinophytes: A type of green alga, only found in marine conditions, part of the Viridiplantae

7. Green algae (viridaeplantae),

Plants: An imprecise term used varyingly from anything with plastids, or more restrictively to that subset being the multicellular taxa with plastids, or more restrictively to the multicellular taxa with plastids with chlorophyll B and cellulosic cell walls, or more restrictively to the sister group to the Charales. The term is here regarded as descriptive and not taxonomic. The most restrictive concept is here part of the Viridiplantae.

Viridaeplantae: the evolutionary lineage of green (with chlorophyll B) algae and plants that include the prasinophytes, chlorophytes and the land plants

 

 

 

 

8. Red algae

Red algae: mostly multicellular algae with phycobilin rich plastids providing generally a pink or red colour.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algae: Protists with Chloroplasts

David J. Patterson

The algae are a polyphyletic and paraphyletic group of organisms. They are defined in differing ways, but are usually considered to be the photosynthetic organisms excepting plants. Using the term 'plants' in its most restrictive fashion, the algae are then photosynthetic organisms excepting the sister group to the Charales (i.e. the land plants). Such a definition allows inclusion of photosynthetic prokaryotes such as the cyanobacteria. The definition applied here is that the algae is that artificial subset of the photosynthetic eukaryotes which excludes the sister group to the Charales (land plants).

The algae are the dominating primary producers in aquatic ecosystems, on unstable substrates (muds and sands) and in intertidal marine habitats. Algae are commonly exploited as foodstuffs, food additives, toothpastes, etc.

The ability for eukaryotes to carry out photosynthesis was made possible by one or more symbiotic associations between heterotrophic eukaryotes and photosynthetic prokaryotes (or their descendents). There were several primary symbioses between eukaryotes and blue green algae. In one lineage, the photosynthetic organism lost much of its genetic independence and became functionally and genetically integrated as chloroplasts within the host cell. Modern chloroplasts, also called plastids, are bounded by two or more membranes, and most usually lie free in the cytoplasm, but in some cases they may be located within a fold of the nuclear envelope, or may be associated with the cytoplasm and residual nucleus of a eukaryotic endosybiont. The descendents of some of these primary plastids have gone on to form further associations. At least two types of protists (chloroarachniophytes and cryptomonads) have acquired 'plastids' by forming symbioses with eukaryotic algae. This are referred to as secondary symbioses.

Algae are distinguished on a number of different characteristics. The most important ones are:

  • the colour of the plastids (more correctly the combination of photosynthetic pigments that are present in the plastid)
  • the presence of flagella (and if so how many, how do they insert in the cell and how do they beat)
  • is the cell surrounded by extracellular material? If so, what is that material - organic or inorganic, a continuous wall or a layer of scales)
  • are the cells motile or not?
  • do they occur singly, in colonies, filaments or exhibit differentiation that would allow them to satisfy the criterion of multicellularity?

 

Algal protists occur in 8 lineages. These are summarised below.

 

Groups of Algae

GROUP

COMPOSITION

ORGANIZATION

MAJOR PIGMENTS

ALVEOLATES

Contains some algae, autotrophic dinoflagellates, diverse, Peridinium, Symbiodinium, Ceratium

unicellular, colonial, syncytial; free-living, symbiotic and parasitic

chlorophylls a and c, some symbionts

CHLORARACHNIOPHYTES

A few genera of amoeboid organisms all with symbiotic algae, Chlorarachnion

syncytial, free-living

Chlorophyll b

CRYPTOMONADS

About 12 genera of flagellates, Cryptomonas

single cells, rarely forming colonies, some are endobiotic

Chlorophylls a and c, phycobilins

EUGLENIDS

about half of the genera (35) contain members with green chloroplasts, flagellates, Euglena, Trachelomonas

single cells

Chlorophyll b

GLAUCOPHYTES

Several genera of flagellated and non-flagellated protists with similar phycobilin-rich symbionts, e.g. Glaucocystis, Cyanophora

flagellated and non-flagellated cells

Phycobilin

HAPTOPHYTES

Diverse, with many genera, all or all bar one genera with plastids, with naked species and those with scales (coccolithophores)

single cells, some are endosymbionts

Chlorophylls a and c

RED ALGAE (Rhodophyta)

All species are regarded as algal

free-living and parasitic, single celled, and multicellular

Phycobilins

STRAMENOPILES

Most but not all stramenopiles are algae, the group includes diatoms, brown algae, synurophytes and other 'chrysophytes'

single celled, colonial and multicellular, free-living and parasitic

Chlorophylls a and c

VIRIDAEPLANTAE

The green algae, all but a few genera are algal, prasinophytes, chlorophyta (e.g. volvocalean algae, conjugatopohytes, Ulvales, Charales)

single celled, colonial and multicellular, free-living

Chlorophyll b

 

Genera of algal protists for which no clear ultrastructural identity has been developed (after Patterson, 1999):

Adinomonas

Archaeosphaerodiniopsis

Aurospora

Berghiella

Bjornbergiella

Boekelovia

Camptoptyche

Chalarodora

Chlamydomyxa

Copromonas

Cyanomastix

Dinoasteromonas

Dinoceras

Glaucocystopsis

Goniodinium

Heteromastix

Hillea

Histiophysis

Isoselmis

Melanodinium

Meringosphaera

Monodus

Nephrodinium

Pachydinium

Peliainia

Petasaria

Phialonema

Pleuromastix

Pseudoactiniscus

Strobilomonas

Syncrypta

Tetragonidium

Thaulirens

Thaumatodinium

Thylakomonas

Triangulomonas

 

  
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ۸:٥٦ ‎ب.ظ روز دوشنبه ٢٦ امرداد ۱۳۸۸

چگونگی ارسال لیست گونه های رکورد شده به وبلاگ

با سلام

برخی از دوستان در ارتباط با چگونگی ارسال لیست گونه های رکورد شده و یا شناسایی شده خود به وبلاگ پرسیده اند. با تشکر از ارسال نظرات شما به اطلاع می رساند که از طریق پست الکترونیک بنده rrghadi@yahoo.com که در بخش مشخصات نیز درج شده است میتوانید به ارسال مقاله منتشر شده خود در کنفرانسهات، همایشهای داخلی و بین المللی و یا مجلات معتبر به بنده برای درج در سایت Algaebase اقدام نمایید.  

با تشکر

  
نویسنده : رضا رمضان نژاد قادی/ آرش کیانیان مومنی ; ساعت ٢:۱٠ ‎ب.ظ روز یکشنبه ۱۸ امرداد ۱۳۸۸
تگ ها : تکنیک ها